energy injection into two dimensional turbulence a
play

Energy Injection into Two-dimensional Turbulence: a Scaling Regime - PowerPoint PPT Presentation

Energy Injection into Two-dimensional Turbulence: a Scaling Regime Controlled by Drag Yue-Kin Tsang Scripps Institution of Oceanography University of California, San Diego William R. Young Forced-dissipative 2D Systems Conducting fluid layer


  1. Energy Injection into Two-dimensional Turbulence: a Scaling Regime Controlled by Drag Yue-Kin Tsang Scripps Institution of Oceanography University of California, San Diego William R. Young

  2. Forced-dissipative 2D Systems Conducting fluid layer Paret and Tabeling (1998) http://www.fluid.tue.nl f ( x , t ) ∼ I ( t ) × B ( x ) bottom wall friction

  3. Forced-dissipative 2D Systems Conducting fluid layer Soap film Paret and Tabeling (1998) Burgess et al. (1999) http://www.fluid.tue.nl driving belt f ( x , t ) ∼ I ( t ) × B ( x ) induced motion drag from bottom wall friction surrounding gas

  4. Forced-dissipative 2D Systems Conducting fluid layer Soap film The Ocean wind ✲ Paret and Tabeling (1998) Burgess et al. (1999) J. M. Toole (1996) http://www.fluid.tue.nl driving belt wind forcing, f ( x , t ) ∼ I ( t ) × B ( x ) induced motion lunisolar tide drag from sea floor drag, bottom wall friction surrounding gas instabilities

  5. Forced-dissipative 2D Systems Conducting fluid layer Soap film The Ocean wind ✲ Paret and Tabeling (1998) Forcing (energy input) Nonlinear interaction (energy redistributed) Dissipation (energy removed) J. M. Toole (1996) How much power is needed to drive these systems?? = ε

  6. Energy Injection Rate Pulling a block on a rough surface by a constant force Newton’s second law, F − µ v = mdv dt Steady state velocity, v = F µ Energy injection rate (Power input), � � F ∼ µ − 1 ε = Fv = F µ

  7. Dependence of ε on µ Forced harmonic oscillator x + ω 2 ¨ 0 x = − µ ˙ x + A cos ω t instantaneous : ε int ( t ) = ˙ x ( t ) A cos ω t � T ε = 1 averaged : ε int ( t ′ ) dt ′ T 0

  8. Dependence of ε on µ Forced harmonic oscillator x + ω 2 ¨ 0 x = − µ ˙ x + A cos ω t instantaneous : ε int ( t ) = ˙ x ( t ) A cos ω t � T ε = 1 averaged : ε int ( t ′ ) dt ′ T 0 ε ∼ µ − 1 ∼ µ 0 µ ∗ ( ω ) µ

  9. Two-dimensional turbulence ζ t + u · ∇ ζ = f ( x , t ) − µζ + ν ∇ 2 ζ u = ( u , v ) ζ ≡ v x − u y = ∇ 2 ψ Energy injection rate ε = −� ψ f � Power Integral (conservation of energy) ε = µ � u 2 + v 2 � + ν � ζ 2 � ���� � ������ �� ������ � ε ν ε µ small-scale forcing: f = τ − 2 f cos( k f x ), k − 1 ≪ box size f drag is the main dissipative mechanism: ε µ ≫ ε ν

  10. Numerical Model ζ t + u · ∇ ζ = cos x − µζ − ν ∇ 8 ζ L = 32(2 π ) N = 1024 2 µ = 0 . 007 ν = 10 − 5 ε = � ζ cos x � x , y ε int ( t ) = ζ cos x

  11. Instantaneous energy injection rate 0.3 0.3 instantaneous energy injection rate, ε int ( t ) mean = 0.154 energy dissipation due to drag standard deviation = 0.019 hyperviscous energy dissipation 0.2 0.2 0.1 0.1 0.0 0 0 1000 2000 3000 4000 0 5 10 15 20 t/ τ f Probability density function of ε int ( t ) �� ε int ( t ) = 1 ζ ( x , y , t ) cos x dxdy L 2 � t 1 1 ε int ( t ′ ) dt ′ ε = t 1 − t 0 t 0

  12. Energy Injection Rate vs. Drag ζ L = cos x 1.0 µ + ν 1 ε ≈ ✚ 2 µ ✚ ❂ 0.8 ❏ ❪ ❆ ❑ ❏ ❆ 0.6 ε 0.4 ✛ 0.2 0.0 0.0 0.2 0.4 0.8 0.6 µ

  13. Scaling Law for ε ( µ ) 0.16 0.5 0.45 0.14 µ =0.004 0.12 4 8 16 32 64 L /2 π ε / 1 3 −5 2 L =32(2 π ), ν=10 , N =1024 -3 2 0.1 L =128(2 π ), ν=2.5 x 10 , N =2048 0.001 0.010 0.100 µ Results are insensitive to ν and (large enough) L

  14. Theory: The Model + ˜ ζ ( x , y , t ) = A ( t ) cos( k f x ) + B ( t ) sin( k f x ) ζ ( x , y , t ) � ����������������������������� �� ����������������������������� � forced mode, ˆ ζ ( x , t ) ε = ( k f /τ f ) 2 � ˆ � ζ cos( k f x ) Random Sweeping Model ζ t + U ˆ ˆ ζ x + V ˆ f cos( k f x ) − µ ˆ ζ − η ˆ ζ y = τ − 2 ζ (1) ε ≈ µ � U 2 + V 2 � ≈ 2 µ � U 2 � (2)

  15. Theory: The Model + ˜ ζ ( x , y , t ) = A ( t ) cos( k f x ) + B ( t ) sin( k f x ) ζ ( x , y , t ) � ����������������������������� �� ����������������������������� � forced mode, ˆ ζ ( x , t ) ε = ( k f /τ f ) 2 � ˆ � ζ cos( k f x ) Random Sweeping Model ζ t + U ˆ ˆ ζ x + V ˆ f cos( k f x ) − µ ˆ ζ − η ˆ ζ y = τ − 2 ζ (1) ε ≈ µ � U 2 + V 2 � ≈ 2 µ � U 2 � (2) advection by large-scale eddies ( U , V ) isotropic: � U 2 � = � V 2 � = U 2 rms vary on scales ≫ k − 1 f large-eddy turnover time ∼ µ − 1 ≫ U rms k f

  16. Theory: The Model + ˜ ζ ( x , y , t ) = A ( t ) cos( k f x ) + B ( t ) sin( k f x ) ζ ( x , y , t ) � ����������������������������� �� ����������������������������� � forced mode, ˆ ζ ( x , t ) ε = ( k f /τ f ) 2 � ˆ � ζ cos( k f x ) Random Sweeping Model ζ t + U ˆ ˆ ζ x + V ˆ f cos( k f x ) − µ ˆ ζ − η ˆ ζ y = τ − 2 ζ (1) ε ≈ µ � U 2 + V 2 � ≈ 2 µ � U 2 � (2) advection by large-scale eddies ( U , V ) isotropic: � U 2 � = � V 2 � = U 2 rms vary on scales ≫ k − 1 f large-eddy turnover time ∼ µ − 1 ≫ U rms k f nonlinear energy transfer out of the forced mode η ≫ µ ≫ ν

  17. Theory: The Solution ζ t + U ˆ ˆ ζ x + V ˆ ζ y = τ − 2 f cos( k f x ) − µ ˆ ζ − η ˆ ζ Neglect µ ( η ≫ µ ) and seek steady-state solution, U ˆ ζ x = τ − 2 f cos( k f x ) − η ˆ ζ Since U ( x , y ) varies on the large scales, cos( k f x − φ ) Uk f ˆ ζ ≈ , tan φ = � η τ 2 η 2 + ( Uk f ) 2 f

  18. Theory: The Solution ζ t + U ˆ ˆ ζ x + V ˆ ζ y = τ − 2 f cos( k f x ) − µ ˆ ζ − η ˆ ζ Neglect µ ( η ≫ µ ) and seek steady-state solution, U ˆ ζ x = τ − 2 f cos( k f x ) − η ˆ ζ Since U ( x , y ) varies on the large scales, cos( k f x − φ ) Uk f ˆ ζ ≈ , tan φ = � η τ 2 η 2 + ( Uk f ) 2 f large U small U φ → π/ 2 φ → 0 ˆ ζ Forcing

  19. Theory: The Scaling Law η � η � transfer rate typical ∼ sweeping rate ≡ α = Uk f U rms k f  1 1 2 ) � η � ∼ shear at k f ∼ ε ( shear ∼ k [ kE ( k )]  3  4 1  3 ) (anticipate ε ∼ µ α ∼ µ 9  2 µ − 1 1 ( ε ≈ 2 µ U 2  U rms k f ∼ ε rms )  2

  20. Theory: The Scaling Law η � η � transfer rate typical ∼ sweeping rate ≡ α = Uk f U rms k f  1 1 2 ) � η � ∼ shear at k f ∼ ε ( shear ∼ k [ kE ( k )]  3  4 1  3 ) (anticipate ε ∼ µ α ∼ µ 9  1 2 µ − 1 ( ε ≈ 2 µ U 2  U rms k f ∼ ε rms )  2 From definition of ε , � � � ˆ η � ζ cos( k f x ) ε ∼ ∼ η 2 + ( Uk f ) 2 Let U ′ = U / U rms and η ′ = η/ � η � , � αη ′ 1 ( αη ′ ) 2 + U ′ 2 P ( U ′ , η ′ ) dU ′ d η ′ ε ∼ U rms

  21. Theory: The Scaling Law η � η � transfer rate typical ∼ sweeping rate ≡ α = Uk f U rms k f  1 1 2 ) � η � ∼ shear at k f ∼ ε ( shear ∼ k [ kE ( k )]  3  4 1  3 ) (anticipate ε ∼ µ α ∼ µ 9  2 µ − 1 1 ( ε ≈ 2 µ U 2  U rms k f ∼ ε rms )  2 From definition of ε , small φ � � � ˆ η � ζ cos( k f x ) ε ∼ ∼ η 2 + ( Uk f ) 2 Let U ′ = U / U rms and η ′ = η/ � η � , � αη ′ 1 P ( U ′ , η ′ ) dU ′ d η ′ ε ∼ ( αη ′ ) 2 + U ′ 2 U rms � ��������� �� ��������� � δ ( U ′ ) as α → 0

  22. Theory: The Scaling Law η � η � transfer rate typical ∼ sweeping rate ≡ α = Uk f U rms k f  1 1 2 ) � η � ∼ shear at k f ∼ ε ( shear ∼ k [ kE ( k )]  3  4 1  3 ) (anticipate ε ∼ µ α ∼ µ 9  2 µ − 1 1 ( ε ≈ 2 µ U 2  U rms k f ∼ ε rms )  2 From definition of ε , small φ � � � ˆ η � ζ cos( k f x ) ε ∼ ∼ η 2 + ( Uk f ) 2 Let U ′ = U / U rms and η ′ = η/ � η � , � αη ′ 1 P ( U ′ , η ′ ) dU ′ d η ′ ε ∼ ( αη ′ ) 2 + U ′ 2 U rms � ��������� �� ��������� � δ ( U ′ ) as α → 0 So, ε ∼ U − 1 rms and ε ≈ 2 µ U 2 rms imply: 1 ε ∼ µ 3

  23. Summary study energy injection rate ε in two-dimensional turbulence with drag µ and a prescribed small-scale body force discover a new scaling regime: 1 ε ∼ µ as µ → 0 3 random sweeping model suggests energy input is mainly due to regions with small velocity 0.16 0.5 0.45 0.14 µ =0.004 0.12 4 8 16 32 64 L /2 π ε / 1 3 2 −5 L =32(2 π ), ν=10 , N =1024 -3 2 0.1 L =128(2 π ), ν=2.5 x 10 , N =2048 0.001 0.010 0.100 µ

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend