ene 2xx renewable energy systems and control lec 04
play

ENE 2XX: Renewable Energy Systems and Control LEC 04 : Distributed - PowerPoint PPT Presentation

ENE 2XX: Renewable Energy Systems and Control LEC 04 : Distributed Optimization of DERs Professor Scott Moura University of California, Berkeley Summer 2018 Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt


  1. ENE 2XX: Renewable Energy Systems and Control LEC 04 : Distributed Optimization of DERs Professor Scott Moura University of California, Berkeley Summer 2018 Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 1

  2. Distributed vs. Decentralized: What are they? Community Optimization/ Distributed Decentralized Control: Power Systems: Decentralized Fully Decentralized Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 2

  3. Distributed vs. Decentralized: What are they? Community Optimization/ Distributed Decentralized Control: Power Systems: Decentralized Fully Decentralized Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 2

  4. Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 3

  5. Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 3

  6. Source: C. Vlahoplus, G. Litra, P . Quinlan, C. Becker, “Revising the California Duck Curve: An Exploration of Its Existence, Impact, and Migration Potential,” Scott Madden, Inc. , Oct 2016. Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 3

  7. Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 3

  8. Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 4

  9. PEV Energy Storage: How much, when, and where? A. Langton and N. Crisostomo, “Vehicle-grid integration: A vision for zero-emission transportation interconnected throughout Californias electricity system,” California Public Utilities Commission, Tech. Rep. R. 13-11-XXX, 2013. Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 5

  10. Problem Statement Goal: Schedule DERs (e.g. PEVs, ESS, TCLs) to flatten California duck curve Challenge: N = 10 3 , 10 6 , or 10 9 DERs to schedule every time slot!!! � � 2 T h N � � D t + P t minimize P ∈ R Th × N n t = 1 n = 1 t P t n ≤ u t n ≤ P n , ∀ n , ∀ t subject to A Quadratic Program (QP) T h × N optimization variables 2 T × N linear inequality constraints Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 6

  11. Problem Statement Goal: Schedule DERs (e.g. PEVs, ESS, TCLs) to flatten California duck curve Challenge: N = 10 3 , 10 6 , or 10 9 DERs to schedule every time slot!!! � � 2 T h N � � D t + P t minimize P ∈ R Th × N n t = 1 n = 1 t P t n ≤ u t n ≤ P ∀ n , ∀ t subject to n , A Quadratic Program (QP) 100K EVs*, 24 hrs T h × N optimization variables 2.4M 2 T h × N linear inequality constraints 4.8M *cumulative PEVs sold in CA by mid-2014 Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 6

  12. Problem Statement Goal: Schedule DERs (e.g. PEVs, ESS, TCLs) to flatten California duck curve Challenge: N = 10 3 , 10 6 , or 10 9 DERs to schedule every time slot!!! � � 2 T h N � � D t + P t minimize P ∈ R Th × N n t = 1 n = 1 t P t n ≤ u t n ≤ P ∀ n , ∀ t subject to n , A Quadratic Program (QP) 1.5M EVs*, 24 hrs T × N optimization variables 32M 2 T × N linear inequality constraints 64M *California Gov. Brown 2025 ZEV Goal Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 6

  13. Problem Statement Goal: Schedule DERs (e.g. PEVs, ESS, TCLs) to flatten California duck curve Challenge: N = 10 3 , 10 6 , or 10 9 DERs to schedule every time slot!!! � � 2 T h N � � D t + P t minimize P ∈ R Th × N n t = 1 n = 1 t P t n ≤ u t n ≤ P ∀ n , ∀ t subject to n , A Quadratic Program (QP) 5M EVs*, 24 hrs T × N optimization variables 120M 2 T × N linear inequality constraints 240M *China’s 2025 EV Goal Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 6

  14. Problem Statement Goal: Schedule DERs (e.g. PEVs, ESS, TCLs) to flatten California duck curve Challenge: N = 10 3 , 10 6 , or 10 9 DERs to schedule every time slot!!! � � 2 T h N � � D t + P t minimize P ∈ R Th × N n t = 1 n = 1 t P t n ≤ u t n ≤ P ∀ n , ∀ t subject to n , A Quadratic Program (QP) 5M EVs*, 24 hrs T × N optimization variables 120M 2 T × N linear inequality constraints 240M *China’s 2025 EV Goal Enabling Innovation: Use duality theory!!! Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 6

  15. Optimal PEV Aggregation � � 2 T h N N � � � D t + P t � P n � 2 + σ minimize P ∈ R Th × N n t = 1 n = 1 n = 1 t P t n ≤ P t n ≤ P ∀ n , ∀ t subject to: n , Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 7

  16. Optimal PEV Aggregation Define “consensus variable”: z t = D t + � N n P t n T h N z t � 2 + σ � � � � P n � 2 minimize P ∈ R Th × N , z ∈ R Th t = 1 n = 1 N � z t = D t + P t n , ∀ t subject to: n t P t n ≤ P t n ≤ P n , ∀ n , ∀ t Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 7

  17. Optimal PEV Aggregation Strong duality holds. Define dual problem: � � T h N N z t � 2 + λ t � � � � z t − D t − P t � P n � 2 + σ max min n λ ∈ R Th P ∈ R Th × N , z ∈ R Th n t = 1 n = 1 t P t n ≤ P t n ≤ P n , ∀ n , ∀ t subject to: Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 7

  18. Optimal PEV Aggregation Strong duality holds. Define dual problem: � � T h N N z t � 2 + λ t � � � � z t − D t − P t � P n � 2 + σ max min n λ ∈ R Th P ∈ R Th × N , z ∈ R Th n t = 1 n = 1 t P t n ≤ P t n ≤ P n , ∀ n , ∀ t subject to: minimize w.r.t. z f t ( z t ) = ( z t ) 2 + λ t z t , df t ⇒ ( z t ) ⋆ = − 1 dz t = 2 z t + λ t = 0 , 2 λ t For convenience, define ρ t = − λ t . Plug ( z t ) ⋆ = 1 2 ρ t into dual problem Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 7

  19. Optimal PEV Aggregation Plug ( z t ) ⋆ = 1 2 ρ t into dual problem � � T h N N ρ t � 2 − ρ t � 1 1 � � 2 ρ t − D t − � P t � P n � 2 max min + σ n 4 ρ ∈ R Th P ∈ R Th × N t = 1 n n = 1 t P t n ≤ P t subject to: n ≤ P n , ∀ n , ∀ t Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 7

  20. Optimal PEV Aggregation Plug ( z t ) ⋆ = 1 2 ρ t into dual problem � � T h N N ρ t � 2 − ρ t � 1 1 � � 2 ρ t − D t − � P t � P n � 2 max min + σ n 4 ρ ∈ R Th P ∈ R Th × N t = 1 n n = 1 t P t n ≤ P t subject to: n ≤ P n , ∀ n , ∀ t The P n terms decouple along n , yielding N parallel subproblems: � � N ρ ∈ R Th − 1 � 4 � ρ � 2 + D T ρ P ∈ R Th × N ρ T P n + σ � P n � 2 + max min n = 1 t subject to: P t n ≤ P t n ≤ P n , ∀ n , ∀ t Each PEV optimizes her own schedule, given ρ t from aggregator Parallelized N = 1 . 5 M problems Constraints remain private Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 7

  21. Provable Convergence w/ Bounds N � � g ( ρ ) = − 1 � 4 � ρ � 2 + D T ρ P ∈ R Th × N ρ T P n + σ � P n � 2 + Define min n = 1 t s. to P t n ≤ P t n ≤ P n , ∀ n , ∀ t Theorem: Linear Convergence Rate The dual problem has a unique solution ρ ⋆ , and the gradient ascent algorithm with step-size α = − 2 σ/ ( N + σ ) converges linearly according to � � k N g ( ρ ⋆ ) − g ( ρ k ) ≤ ( g ( ρ ⋆ ) − g ( ρ 0 )) N + σ Similar theorems for Incremental stochastic gradient method (constant step-size) Incremental stochastic gradient method (decreasing step-size) Incorporate uncertainty in D t and PEV availability (SOCP) Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 8

  22. Optimal DER Aggregation N N ρ ∈ R Th − 1 � � 4 � ρ � 2 + D T ρ P ∈ R Th × N ρ T P n + σ � P n � 2 max + min n n = 1 t s. to P t n ≤ P t n ≤ P ∀ n , ∀ t n , ρ t is time-varying price incentive uniformly provided to each DER. Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 9

  23. Distributed Algorithm N N ρ ∈ R Th − 1 � � 4 � ρ � 2 + D T ρ P ∈ R Th × N ρ T P n + σ � P n � 2 + max min n n = 1 t s. to P t n ≤ P t n ≤ P ∀ n , ∀ t n , Algorithm 1 Gradient Ascent (constant step size) Initialize ρ = ρ 0 ; Choose α = − 2 σ/ ( N + σ ) for k = 1 , · · · , k max (1) Inner Optimization: Optimize charge schedule for each PEV n for n = 0 , 1 , · · · , N ( ρ k ) T P n + σ � N ... Solve, P k n = 1 � P n � 2 n = arg min P t t n ≤ P t n ≤ P n end for (2) Outer Optimization: Update dual variable ρ ... ρ k + 1 = ρ k + α · ∇ g ( ρ k ) � � ... ρ k + 1 = ρ k + α 2 ρ k + D + � N − 1 n = 1 P k n end for Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 04 - Distributed Opt of DERs Slide 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend