encoding zenon modulo in dedukti
play

Encoding Zenon Modulo in Dedukti Olivier Hermant CRI, MINES - PowerPoint PPT Presentation

Encoding Zenon Modulo in Dedukti Olivier Hermant CRI, MINES ParisTech and Inria May 26, 2014 2nd KWARC-Deducteam workshop, Bremen O. Hermant (Mines & Inria) Zenon in Dedukti May 26, 2014 1 / 24 Double-Negation Translations


  1. Encoding Zenon Modulo in Dedukti Olivier Hermant CRI, MINES ParisTech and Inria May 26, 2014 2nd KWARC-Deducteam workshop, Bremen O. Hermant (Mines & Inria) Zenon in Dedukti May 26, 2014 1 / 24

  2. Double-Negation Translations Double-Negation translations: ◮ a shallow way to encode classical logic into intuitionistic ◮ Zenon modulo’s backend for Dedukti ◮ existing translations: Kolmogorov’s (1925), Gentzen-Gödel’s (1933), Kuroda’s (1951), Krivine’s (1990), · · · Minimizing the translations: ◮ turns more formulæ into themselves; ◮ shifts a classical proof into an intuitionistic proof of the same formula. ◮ in this talk first-order logic (no modulo) ◮ readily extensible O. Hermant (Mines & Inria) Zenon in Dedukti May 26, 2014 2 / 24

  3. The Classical Sequent Calculus (LK) ax Γ , A ⊢ A , ∆ Γ , A , B ⊢ ∆ Γ ⊢ A , ∆ Γ ⊢ B , ∆ ∧ R ∧ L Γ , A ∧ B ⊢ ∆ Γ ⊢ A ∧ B , ∆ Γ , A ⊢ ∆ Γ , B ⊢ ∆ ∨ L Γ ⊢ A , B , ∆ ∨ R Γ , A ∨ B ⊢ ∆ Γ ⊢ A ∨ B , ∆ Γ ⊢ A , ∆ Γ , B ⊢ ∆ ⇒ L Γ , A ⊢ B , ∆ ⇒ R Γ , A ⇒ B ⊢ ∆ Γ ⊢ A ⇒ B , ∆ Γ ⊢ A , ∆ Γ , A ⊢ ∆ ¬ L ¬ R Γ , ¬ A ⊢ ∆ Γ ⊢ ¬ A , ∆ Γ , A [ c / x ] ⊢ ∆ ∃ L Γ ⊢ A [ t / x ] , ∆ ∃ R Γ , ∃ xA ⊢ ∆ Γ ⊢ ∃ xA , ∆ Γ , A [ t / x ] ⊢ ∆ ∀ L Γ ⊢ A [ c / x ] , ∆ ∀ R Γ , ∀ xA ⊢ ∆ Γ ⊢ ∀ xA , ∆ O. Hermant (Mines & Inria) Zenon in Dedukti May 26, 2014 3 / 24

  4. The Intuitionistic Sequent Calculus (LJ) ax Γ , A ⊢ A Γ , A , B ⊢ ∆ Γ ⊢ A Γ ⊢ B ∧ L ∧ R Γ , A ∧ B ⊢ ∆ Γ ⊢ A ∧ B Γ , A ⊢ ∆ Γ , B ⊢ ∆ ∨ L Γ ⊢ A Γ ⊢ B ∨ R 1 ∨ R 2 Γ ⊢ A ∨ B Γ ⊢ A ∨ B Γ , A ∨ B ⊢ ∆ Γ ⊢ A Γ , B ⊢ ∆ ⇒ L Γ , A ⊢ B ⇒ R Γ , A ⇒ B ⊢ ∆ Γ ⊢ A ⇒ B Γ ⊢ A Γ , A ⊢ ¬ L ¬ R Γ , ¬ A ⊢ ∆ Γ ⊢ ¬ A Γ , A [ c / x ] ⊢ ∆ ∃ L Γ ⊢ A [ t / x ] ∃ R Γ , ∃ xA ⊢ ∆ Γ ⊢ ∃ xA Γ , A [ t / x ] ⊢ ∆ ∀ L Γ ⊢ A [ c / x ] ∀ R Γ , ∀ xA ⊢ ∆ Γ ⊢ ∀ xA O. Hermant (Mines & Inria) Zenon in Dedukti May 26, 2014 4 / 24

  5. Note on Frameworks ◮ structural rules are not shown (contraction, weakening) ◮ left-rules seem very similar in both cases ◮ so, lhs formulæ can be translated by themselves ◮ this accounts for polarizing the translations Positive and Negative occurrences ◮ An occurrence of A in B is positive if: ⋆ B = A ⋆ B = C ⋆ D [ ⋆ = ∧ , ∨ ] and the occurrence of A is in C or in D and positive ⋆ B = C ⇒ D and the occurrence of A is in C (resp. in D) and negative (resp. positive) ⋆ B = Q x C [ Q = ∀ , ∃ ] and the occurrence of A is in C and is positive ◮ Dually for negative occurrences. O. Hermant (Mines & Inria) Zenon in Dedukti May 26, 2014 5 / 24

  6. Kolmogorov’s Translation Kolmogorov’s ¬¬ -translation introduces ¬¬ everywhere: B Ko = ¬¬ B (atoms) ( B ∧ C ) Ko = ¬¬ ( B Ko ∧ C Ko ) ( B ∨ C ) Ko = ¬¬ ( B Ko ∨ C Ko ) ( B ⇒ C ) Ko = ¬¬ ( B Ko ⇒ C Ko ) ( ∀ xA ) Ko = ¬¬ ( ∀ xA Ko ) ( ∃ xA ) Ko = ¬¬ ( ∃ xA Ko ) Theorem Γ ⊢ ∆ is provable in LK iff Γ Ko , � ∆ Ko ⊢ is provable in LJ. Antinegation � is an operator, such that: ◮ � ¬ A = A ; ◮ � B = ¬ B otherwise. O. Hermant (Mines & Inria) Zenon in Dedukti May 26, 2014 6 / 24

  7. Light Kolmogorov’s Translation Moving negation from connectives to formulæ [DowekWerner] : B K = B (atoms) = ( ¬¬ B K ∧ ¬¬ C K ) ( B ∧ C ) K = ( ¬¬ B K ∨ ¬¬ C K ) ( B ∨ C ) K = ( ¬¬ B K ⇒ ¬¬ C K ) ( B ⇒ C ) K ( ∀ xA ) K = ∀ x ¬¬ A K ( ∃ xA ) K = ∃ x ¬¬ A K Theorem Γ ⊢ ∆ is provable in LK iff Γ K , ¬ ∆ K ⊢ is provable in LJ. Correspondence A Ko = ¬¬ A K O. Hermant (Mines & Inria) Zenon in Dedukti May 26, 2014 7 / 24

  8. Polarizing Kolmogorov’s translation Warming-up. Consider left-hand and right-hand side formulæ: LHS RHS B K B K = B = B = ( ¬¬ B K ∧ ¬¬ C K ) = ( ¬¬ B K ∧ ¬¬ C K ) ( B ∧ C ) K ( B ∧ C ) K = ( ¬¬ B K ∨ ¬¬ C K ) = ( ¬¬ B K ∨ ¬¬ C K ) ( B ∨ C ) K ( B ∨ C ) K = ( ¬¬ B K ⇒ ¬¬ C K ) = ( ¬¬ B K ⇒ ¬¬ C K ) ( B ⇒ C ) K ( B ⇒ C ) K ( ∀ xA ) K = ∀ x ¬¬ A K ( ∀ xA ) K = ∀ x ¬¬ A K ( ∃ xA ) K = ∃ x ¬¬ A K ( ∃ xA ) K = ∃ x ¬¬ A K Example of translation (( A ∨ B ) ⇒ C ) K is ¬¬ ( ¬¬ A ∨ ¬¬ B ) ⇒ ¬¬ C (( A ∨ B ) ⇒ C ) K is ¬¬ ( ¬¬ A ∨ ¬¬ B ) ⇒ ¬¬ C O. Hermant (Mines & Inria) Zenon in Dedukti May 26, 2014 8 / 24

  9. Polarizing Light Kolmogorov’s Translation Warming-up. Consider left-hand and right-hand side formulæ: LHS RHS B K + = B B K − = B ( B ∧ C ) K + = ( B K + ∧ ( B ∧ C ) K − = ( ¬¬ B K − ∧ ¬¬ C K − ) C K + ) ( B ∨ C ) K + = ( B K + ∨ ( B ∨ C ) K − = ( ¬¬ B K − ∨ ¬¬ C K − ) C K + ) ( B ⇒ C ) K + = ( ¬¬ B K − ⇒ ( B ⇒ C ) K − = ( B K + ⇒ ¬¬ C K − ) C K + ) ( ∀ xA ) K + = ∀ xA K + ( ∀ xA ) K − = ∀ x ¬¬ A K − ( ∃ xA ) K + = ∃ xA K + ( ∃ xA ) K − = ∃ x ¬¬ A K − Example of translation (( A ∨ B ) ⇒ C ) K + is ¬¬ ( ¬¬ A ∨ ¬¬ B ) ⇒ C (( A ∨ B ) ⇒ C ) K − is ( A ∨ B ) ⇒ ¬¬ C O. Hermant (Mines & Inria) Zenon in Dedukti May 26, 2014 9 / 24

  10. Results on Polarized Kolmogorov’s Translation Theorem If Γ ⊢ ∆ is provable in LK, then Γ K + , ¬ ∆ K − ⊢ is provable in LJ. Proof: by induction. Negation is bouncing. Example: π 1 π 2 Γ ⊢ A , ∆ Γ ⊢ B , ∆ ∧ R Γ ⊢ A ∧ B , ∆ is turned into: π ′ π ′ 1 2 Γ K + , ¬ A K − , ¬ ∆ K − ⊢ Γ K + , ¬ B K − , ¬ ∆ K − ⊢ ∧ R Γ K + , ¬ ( ¬¬ A K − ∧ ¬¬ B K − ) , ¬ ∆ K − ⊢ O. Hermant (Mines & Inria) Zenon in Dedukti May 26, 2014 10 / 24

  11. Results on Polarized Kolmogorov’s Translation Theorem If Γ ⊢ ∆ is provable in LK, then Γ K + , ¬ ∆ K − ⊢ is provable in LJ. Proof: by induction. Negation is bouncing. Example: π 1 π 2 Γ ⊢ A , ∆ Γ ⊢ B , ∆ ∧ R Γ ⊢ A ∧ B , ∆ is turned into: π ′ π ′ 1 2 Γ K + , ¬ A K − , ¬ ∆ K − ⊢ Γ K + , ¬ B K − , ¬ ∆ K − ⊢ ∧ R Γ K + , ¬ ∆ K − ⊢ ¬¬ A K − ∧ ¬¬ B K − ¬ L Γ K + , ¬ ( ¬¬ A K − ∧ ¬¬ B K − ) , ¬ ∆ K − ⊢ O. Hermant (Mines & Inria) Zenon in Dedukti May 26, 2014 10 / 24

  12. Results on Polarized Kolmogorov’s Translation Theorem If Γ ⊢ ∆ is provable in LK, then Γ K + , ¬ ∆ K − ⊢ is provable in LJ. Proof: by induction. Negation is bouncing. Example: π 1 π 2 Γ ⊢ A , ∆ Γ ⊢ B , ∆ ∧ R Γ ⊢ A ∧ B , ∆ is turned into: π ′ π ′ 1 2 Γ K + , ¬ A K − , ¬ ∆ K − ⊢ Γ K + , ¬ B K − , ¬ ∆ K − ⊢ Γ K + , ¬ ∆ K − ⊢ ¬¬ A K − Γ K + , ¬ ∆ K − ⊢ ¬¬ B K − ∧ R Γ K + , ¬ ∆ K − ⊢ ¬¬ A K − ∧ ¬¬ B K − ¬ L Γ K + , ¬ ( ¬¬ A K − ∧ ¬¬ B K − ) , ¬ ∆ K − ⊢ O. Hermant (Mines & Inria) Zenon in Dedukti May 26, 2014 10 / 24

  13. Results on Polarized Kolmogorov’s Translation Theorem If Γ ⊢ ∆ is provable in LK, then Γ K + , ¬ ∆ K − ⊢ is provable in LJ. Proof: by induction. Negation is bouncing. Example: π 1 π 2 Γ ⊢ A , ∆ Γ ⊢ B , ∆ ∧ R Γ ⊢ A ∧ B , ∆ is turned into: π ′ π ′ 1 2 Γ K + , ¬ A K − , ¬ ∆ K − ⊢ Γ K + , ¬ B K − , ¬ ∆ K − ⊢ ¬ R ¬ R Γ K + , ¬ ∆ K − ⊢ ¬¬ A K − Γ K + , ¬ ∆ K − ⊢ ¬¬ B K − ∧ R Γ K + , ¬ ∆ K − ⊢ ¬¬ A K − ∧ ¬¬ B K − ¬ L Γ K + , ¬ ( ¬¬ A K − ∧ ¬¬ B K − ) , ¬ ∆ K − ⊢ O. Hermant (Mines & Inria) Zenon in Dedukti May 26, 2014 10 / 24

  14. Results on Polarized Kolmogorov’s Translation Theorem If Γ ⊢ ∆ is provable in LK, then Γ K + , ¬ ∆ K − ⊢ is provable in LJ. Proof: by induction. Negation is bouncing. Example: π ′ π ′ 1 2 Γ K + , ¬ A K − , ¬ ∆ K − ⊢ Γ K + , ¬ B K − , ¬ ∆ K − ⊢ π 1 π 2 ¬ R ¬ R Γ K + , ¬ ∆ K − ⊢ ¬¬ A K − Γ K + , ¬ ∆ K − ⊢ ¬¬ B K − Γ ⊢ A , ∆ Γ ⊢ B , ∆ ∧ R becomes ∧ R Γ K + , ¬ ∆ K − ⊢ ¬¬ A K − ∧ ¬¬ B K − Γ ⊢ A ∧ B , ∆ ¬ L Γ K + , ¬ ( ¬¬ A K − ∧ ¬¬ B K − ) , ¬ ∆ K − ⊢ Theorem If Γ K + , ¬ ∆ K − ⊢ is provable in LJ, then Γ ⊢ ∆ is provable in LK. Proof: ad-hoc generalization. O. Hermant (Mines & Inria) Zenon in Dedukti May 26, 2014 11 / 24

  15. Gödel-Gentzen Translation In this translation, disjunctions and existential quantifiers are replaced by a combination of negation and their De Morgan duals: LHS RHS B gg = ¬¬ B B gg = ¬¬ B ( A ∧ B ) gg = A gg ∧ B gg ( A ∧ B ) gg = A gg ∧ B gg ( A ∨ B ) gg = ¬ ( ¬ A gg ∧ ¬ B gg ) ( A ∨ B ) gg = ¬ ( ¬ A gg ∧ ¬ B gg ) ( A ⇒ B ) gg = A gg ⇒ B gg ( A ⇒ B ) gg = A gg ⇒ B gg ( ∀ xA ) gg = ∀ xA gg ( ∀ xA ) gg = ∀ xA gg ( ∃ xA ) gg = ¬∀ x ¬ A gg ( ∃ xA ) gg = ¬∀ x ¬ A gg Example of translation (( A ∨ B ) ⇒ C ) gg is ( ¬ ( ¬¬¬ A ∧ ¬¬¬ B )) ⇒ ¬¬ C Theorem Γ ⊢ ∆ is provable in LK iff Γ gg , � ∆ gg ⊢ is provable in LJ. O. Hermant (Mines & Inria) Zenon in Dedukti May 26, 2014 12 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend