email jdhsmith iastate edu
play

email: jdhsmith@iastate.edu - PowerPoint PPT Presentation

Quantum quasigroups Jonathan D.H. Smith Iowa State University email: jdhsmith@iastate.edu http://orion.math.iastate.edu/jdhsmith/homepage.html The big picture The big picture GROUP THEORY The big picture QUASIGROUPS, LOOPS


  1. Symmetric monoidal functors Typical examples of symmetric monoidal categories: • ( Set , × , ⊤ ) ; • ( S, ⊗ , S ) for a commutative ring S ; • Any entropic variety ( V , ⊗ , 1 ) ; • Any category ( C , + , ⊥ ) with coproduct + and initial object ⊥ . A symmetric monoidal functor is a Monoid homomorphism. Examples:

  2. Symmetric monoidal functors Typical examples of symmetric monoidal categories: • ( Set , × , ⊤ ) ; • ( S, ⊗ , S ) for a commutative ring S ; • Any entropic variety ( V , ⊗ , 1 ) ; • Any category ( C , + , ⊥ ) with coproduct + and initial object ⊥ . A symmetric monoidal functor is a Monoid homomorphism. Examples: • Free algebra functor F : ( Set , × , ⊤ ) → ( V , ⊗ , 1 ) for an entropic variety V ;

  3. Symmetric monoidal functors Typical examples of symmetric monoidal categories: • ( Set , × , ⊤ ) ; • ( S, ⊗ , S ) for a commutative ring S ; • Any entropic variety ( V , ⊗ , 1 ) ; • Any category ( C , + , ⊥ ) with coproduct + and initial object ⊥ . A symmetric monoidal functor is a Monoid homomorphism. Examples: • Free algebra functor F : ( Set , × , ⊤ ) → ( V , ⊗ , 1 ) for an entropic variety V ; • Underlying set functor U : ( S, ⊕ , { 0 } ) → ( Set , × , ⊤ ) .

  4. Monoid and comonoid diagrams

  5. � � � � � � Monoid and comonoid diagrams 1 A ⊗∇ � 1 A ⊗ η A ⊗ A ⊗ A A ⊗ A A ⊗ A A ⊗ 1 monoid ❏ ❏ ❏ ❏ ∇ ❏ ρ A η ⊗ 1 A ❏ ∇⊗ 1 A ∇ ❏ ❏ ❏ ❏ � A � A A ⊗ A 1 ⊗ A ∇ λ A

  6. � � � � � � Monoid and comonoid diagrams 1 A ⊗∇ � 1 A ⊗ η A ⊗ A ⊗ A A ⊗ A A ⊗ A A ⊗ 1 monoid ❏ ❏ ❏ ❏ ∇ ❏ ρ A η ⊗ 1 A ❏ ∇⊗ 1 A ∇ ❏ ❏ ❏ ❏ � A � A A ⊗ A 1 ⊗ A ∇ λ A unit η , multiplication ∇

  7. � � � � � � � � � � � � � Monoid and comonoid diagrams 1 A ⊗∇ � 1 A ⊗ η A ⊗ A ⊗ A A ⊗ A A ⊗ A A ⊗ 1 monoid ❏ ❏ ❏ ❏ ∇ ❏ ρ A η ⊗ 1 A ❏ ∇⊗ 1 A ∇ ❏ ❏ ❏ ❏ � A � A A ⊗ A 1 ⊗ A ∇ λ A unit η , multiplication ∇ 1 A ⊗ ∆ 1 A ⊗ ε � A ⊗ A ⊗ A A ⊗ A A ⊗ A A ⊗ 1 comonoid � ❏❏❏❏❏❏❏❏❏❏ ∆ ρ − 1 ε ⊗ 1 A ∆ ⊗ 1 A ∆ A A ⊗ A A 1 ⊗ A A ∆ λ − 1 A

  8. � � � � � � � � � � � � � Monoid and comonoid diagrams 1 A ⊗∇ � 1 A ⊗ η A ⊗ A ⊗ A A ⊗ A A ⊗ A A ⊗ 1 monoid ❏ ❏ ❏ ❏ ∇ ❏ ρ A η ⊗ 1 A ❏ ∇⊗ 1 A ∇ ❏ ❏ ❏ ❏ � A � A A ⊗ A 1 ⊗ A ∇ λ A unit η , multiplication ∇ 1 A ⊗ ∆ 1 A ⊗ ε � A ⊗ A ⊗ A A ⊗ A A ⊗ A A ⊗ 1 comonoid � ❏❏❏❏❏❏❏❏❏❏ ∆ ρ − 1 ε ⊗ 1 A ∆ ⊗ 1 A ∆ A A ⊗ A A 1 ⊗ A A ∆ λ − 1 A counit ε , comultiplication in Sweedler notation ∆: a �→ a L ⊗ a R or ( a L 1 ⊗ a R 1 ) . . . ( a L na ⊗ a R na ) ( ) ∆: A → A ⊗ A ; a �→ w a

  9. Bi-algebra diagram

  10. � � � � � � � � � � � Bi-algebra diagram ∇ 1 ∆ � 1 1 ⊗ 1 1 ⊗ 1 1 � ❃❃❃❃❃❃❃ � ������� ε ⊗ ε η ⊗ η ε η ∇ ∆ A ⊗ A A A ⊗ A ❨ ❡ ❨ ❡ ❨ ❡ ❨ ❡ ❨ ❡ ❨ ❡ ❨ ❡ ❨ ❡ ❨ ❡ ❨ ∆ ⊗ ∆ ❡ ∇⊗∇ ❨ ❡ ❨ ❡ ❨ ❡ ❨ ❡ ❨ ❡ ❨ ❡ A ⊗ A ⊗ A ⊗ A A ⊗ A ⊗ A ⊗ A 1 A ⊗ τ ⊗ 1 A

  11. � � � � � � � � � � � Bi-algebra diagram ∇ 1 ∆ � 1 1 ⊗ 1 1 ⊗ 1 1 � ❃❃❃❃❃❃❃ � ������� ε ⊗ ε η ⊗ η ε η ∇ ∆ A ⊗ A A A ⊗ A ❨ ❡ ❨ ❡ ❨ ❡ ❨ ❡ ❨ ❡ ❨ ❡ ❨ ❡ ❨ ❡ ❨ ❡ ❨ ∆ ⊗ ∆ ❡ ∇⊗∇ ❨ ❡ ❨ ❡ ❨ ❡ ❨ ❡ ❨ ❡ ❨ ❡ A ⊗ A ⊗ A ⊗ A A ⊗ A ⊗ A ⊗ A 1 A ⊗ τ ⊗ 1 A     ∆ monoid     means  is a  homomorphism. ∇ comonoid  

  12. Antipode diagram

  13. � � � � � Antipode diagram S ⊗ 1 A � A ⊗ A A ⊗ A ✻ ✟ ✻ ✟ ✻ ✟ ✻ ✻ ✟ ✻ ✟ ✻ ✟ ∆ ∇ ✻ ✟ ✟ ✻ ✟ ✻ ✟ ✻ ✟ ✻ ✻ ✟ ✻ ✟ ✟ ε A � A A 1 ✻ η A ✻ ✟ ✻ ✟ ✻ ✟ ✻ ✟ ✻ ✟ ✻ ✟ ✻ ✟ ✻ ✟ ∆ ∇ ✻ ✟ ✻ ✟ ✻ ✟ ✻ ✟ ✻ ✟ ✟ � A ⊗ A A ⊗ A 1 A ⊗ S

  14. � � � � � Antipode diagram S ⊗ 1 A � A ⊗ A A ⊗ A ✻ ✟ ✻ ✟ ✻ ✟ ✻ ✻ ✟ ✻ ✟ ✻ ✟ ∆ ∇ ✻ ✟ ✟ ✻ ✟ ✻ ✟ ✻ ✟ ✻ ✻ ✟ ✻ ✟ ✟ ε A � A A 1 ✻ η A ✻ ✟ ✻ ✟ ✻ ✟ ✻ ✟ ✻ ✟ ✻ ✟ ✻ ✟ ✻ ✟ ∆ ∇ ✻ ✟ ✻ ✟ ✻ ✟ ✻ ✟ ✻ ✟ ✟ � A ⊗ A A ⊗ A 1 A ⊗ S Bi-algebra with an antipode S is a Hopf algebra or quantum group .

  15. Examples of Hopf algebras

  16. Examples of Hopf algebras  ∇ : g ⊗ h �→ gh ;      ∆: g �→ g ⊗ g ;  • In ( Set , × , ⊤ ) , a group ( G, · , 1) with: η : ⊤ → { 1 } ;      S : g �→ g − 1 . 

  17. Examples of Hopf algebras  ∇ : g ⊗ h �→ gh ;      ∆: g �→ g ⊗ g ;  • In ( Set , × , ⊤ ) , a group ( G, · , 1) with: η : ⊤ → { 1 } ;      S : g �→ g − 1 .  • Applying the free algebra functor F : Set → V yields a group algebra .

  18. Examples of Hopf algebras  ∇ : g ⊗ h �→ gh ;      ∆: g �→ g ⊗ g ;  • In ( Set , × , ⊤ ) , a group ( G, · , 1) with: η : ⊤ → { 1 } ;      S : g �→ g − 1 .  • Applying the free algebra functor F : Set → V yields a group algebra . • In S , dualizing (for G finite) yields a dual group algebra .

  19. Examples of Hopf algebras  ∇ : g ⊗ h �→ gh ;      ∆: g �→ g ⊗ g ;  • In ( Set , × , ⊤ ) , a group ( G, · , 1) with: η : ⊤ → { 1 } ;      S : g �→ g − 1 .  • Applying the free algebra functor F : Set → V yields a group algebra . • In S , dualizing (for G finite) yields a dual group algebra . • Combining these constructions gives the quantum double of a finite group.

  20. Examples of Hopf algebras  ∇ : g ⊗ h �→ gh ;      ∆: g �→ g ⊗ g ;  • In ( Set , × , ⊤ ) , a group ( G, · , 1) with: η : ⊤ → { 1 } ;      S : g �→ g − 1 .  • Applying the free algebra functor F : Set → V yields a group algebra . • In S , dualizing (for G finite) yields a dual group algebra . • Combining these constructions gives the quantum double of a finite group. • In S , the universal enveloping algebra U ( L ) of a Lie algebra L ,

  21. Examples of Hopf algebras  ∇ : g ⊗ h �→ gh ;      ∆: g �→ g ⊗ g ;  • In ( Set , × , ⊤ ) , a group ( G, · , 1) with: η : ⊤ → { 1 } ;      S : g �→ g − 1 .  • Applying the free algebra functor F : Set → V yields a group algebra . • In S , dualizing (for G finite) yields a dual group algebra . • Combining these constructions gives the quantum double of a finite group. • In S , the universal enveloping algebra U ( L ) of a Lie algebra L , with ∆: x → x ⊗ 1 + 1 ⊗ x for x ∈ L ,

  22. Examples of Hopf algebras  ∇ : g ⊗ h �→ gh ;      ∆: g �→ g ⊗ g ;  • In ( Set , × , ⊤ ) , a group ( G, · , 1) with: η : ⊤ → { 1 } ;      S : g �→ g − 1 .  • Applying the free algebra functor F : Set → V yields a group algebra . • In S , dualizing (for G finite) yields a dual group algebra . • Combining these constructions gives the quantum double of a finite group. • In S , the universal enveloping algebra U ( L ) of a Lie algebra L , with ∆: x → x ⊗ 1 + 1 ⊗ x for x ∈ L , and ∇ as the linearized algebra multiplication.

  23. The big picture GROUP THEORY ❅ ❅ ❅ ❅ ❅ ❘ / QUANTUM GROUPS HOPF ALGEBRAS

  24. The big picture QUASIGROUPS, LOOPS � ✒ � � � � GROUP THEORY ❅ ❅ ❅ ❅ ❅ ❘ / QUANTUM GROUPS HOPF ALGEBRAS

  25. The big picture QUASIGROUPS, LOOPS � ✒ ❅ � ❅ � ❅ � ❅ � ❘ ❅ GROUP THEORY ???????? ❅ � ✒ � ❅ � ❅ � ❅ ❘ ❅ � / QUANTUM GROUPS HOPF ALGEBRAS

  26. References J.D.H. Smith, An Introduction to Quasigroups and Their Representations , Chapman and Hall/CRC, Boca Raton, FL, 2007. D.E. Radford, Hopf Algebras , World Scientific, Singapore, 2012. J.M. P´ erez-Izquierdo, “Algebras, hyperalgebras, nonassociative bialgebras and loops”, Adv. Math. 208 (2007), 834–876. G. Benkart, S. Madaraga, and J.M. P´ erez-Izquierdo, “Hopf algebras with triality”, Trans. Amer. Math. Soc. 365 (2012), 1001–1023.

  27. The big picture QUASIGROUPS, LOOPS � ✒ ❅ � ❅ � ❅ � ❅ � ❘ ❅ GROUP THEORY QUANTUM QUASIGROUPS ❅ � ✒ � ❅ � ❅ � ❅ ❘ ❅ � / QUANTUM GROUPS HOPF ALGEBRAS

  28. Magmas and comagmas

  29. Magmas and comagmas Magma ( A, ∇ : A ⊗ A → A )

  30. Magmas and comagmas Magma ( A, ∇ : A ⊗ A → A ) Unital magma ( A, ∇ : A ⊗ A → A, η : 1 → A )

  31. � � � � Magmas and comagmas Magma ( A, ∇ : A ⊗ A → A ) 1 A ⊗ η Unital magma ( A, ∇ : A ⊗ A → A, η : 1 → A ) A ⊗ A A ⊗ 1 with ❏ ❏ ❏ ❏ ∇ ❏ ρ A η ⊗ 1 A ❏ ❏ ❏ ❏ ❏ � A 1 ⊗ A λ A

  32. � � � � Magmas and comagmas Magma ( A, ∇ : A ⊗ A → A ) 1 A ⊗ η Unital magma ( A, ∇ : A ⊗ A → A, η : 1 → A ) A ⊗ A A ⊗ 1 with ❏ ❏ ❏ ❏ ∇ ❏ ρ A η ⊗ 1 A ❏ ❏ ❏ ❏ ❏ � A 1 ⊗ A λ A Comagma ( A, ∆: A → A ⊗ A )

  33. � � � � Magmas and comagmas Magma ( A, ∇ : A ⊗ A → A ) 1 A ⊗ η Unital magma ( A, ∇ : A ⊗ A → A, η : 1 → A ) A ⊗ A A ⊗ 1 with ❏ ❏ ❏ ❏ ∇ ❏ ρ A η ⊗ 1 A ❏ ❏ ❏ ❏ ❏ � A 1 ⊗ A λ A Comagma ( A, ∆: A → A ⊗ A ) Counital magma ( A, ∆: A → A ⊗ A, ε : A → 1 )

  34. � � � � � � � Magmas and comagmas Magma ( A, ∇ : A ⊗ A → A ) 1 A ⊗ η Unital magma ( A, ∇ : A ⊗ A → A, η : 1 → A ) A ⊗ A A ⊗ 1 with ❏ ❏ ❏ ❏ ∇ ❏ ρ A η ⊗ 1 A ❏ ❏ ❏ ❏ ❏ � A 1 ⊗ A λ A Comagma ( A, ∆: A → A ⊗ A ) 1 A ⊗ ε � Counital magma ( A, ∆: A → A ⊗ A, ε : A → 1 ) A ⊗ A A ⊗ 1 with � ❏❏❏❏❏❏❏❏❏❏ ∆ ρ − 1 ε ⊗ 1 A A 1 ⊗ A A λ − 1 A

  35. Comagmas in ( Set , × , ⊤ )

  36. Comagmas in ( Set , × , ⊤ ) General comagma ( A, ∆) in ( Set , × , ⊤ ) is ∆: A → A ⊗ A ; a �→ a L ⊗ a R

  37. Comagmas in ( Set , × , ⊤ ) General comagma ( A, ∆) in ( Set , × , ⊤ ) is ∆: A → A ⊗ A ; a �→ a L ⊗ a R with functions L : A → A ; a �→ a L and R : A → A ; a �→ a R .

  38. Comagmas in ( Set , × , ⊤ ) General comagma ( A, ∆) in ( Set , × , ⊤ ) is ∆: A → A ⊗ A ; a �→ a L ⊗ a R with functions L : A → A ; a �→ a L and R : A → A ; a �→ a R . Proposition: If ( A, ∆) is counital, then ∆: a �→ a ⊗ a .

  39. Comagmas in ( Set , × , ⊤ ) General comagma ( A, ∆) in ( Set , × , ⊤ ) is ∆: A → A ⊗ A ; a �→ a L ⊗ a R with functions L : A → A ; a �→ a L and R : A → A ; a �→ a R . Proposition: If ( A, ∆) is counital, then ∆: a �→ a ⊗ a . (Each element a is setlike .)

  40. � � � � Comagmas in ( Set , × , ⊤ ) General comagma ( A, ∆) in ( Set , × , ⊤ ) is ∆: A → A ⊗ A ; a �→ a L ⊗ a R with functions L : A → A ; a �→ a L and R : A → A ; a �→ a R . Proposition: If ( A, ∆) is counital, then ∆: a �→ a ⊗ a . (Each element a is setlike .) 1 A ⊗ ε � A ⊗ A A ⊗ 1 Proof: The counital diagram � ❏❏❏❏❏❏❏❏❏❏ ∆ ρ − 1 ε ⊗ 1 A A 1 ⊗ A A λ − 1 A

  41. � � � � � � � Comagmas in ( Set , × , ⊤ ) General comagma ( A, ∆) in ( Set , × , ⊤ ) is ∆: A → A ⊗ A ; a �→ a L ⊗ a R with functions L : A → A ; a �→ a L and R : A → A ; a �→ a R . Proposition: If ( A, ∆) is counital, then ∆: a �→ a ⊗ a . (Each element a is setlike .) 1 A ⊗ ε � A ⊗ A A ⊗ 1 Proof: The counital diagram � ❏❏❏❏❏❏❏❏❏❏ ∆ ρ − 1 ε ⊗ 1 A A 1 ⊗ A A λ − 1 A a L ⊗ a R ✤ 1 A ⊗ ε � a ⊗ x yields , ❴ � ❑❑❑❑❑❑❑❑❑❑❑✤ ∆ ρ − 1 ε ⊗ 1 A A ❴ ☛ x ⊗ a a λ − 1 A

  42. � � � � � � � Comagmas in ( Set , × , ⊤ ) General comagma ( A, ∆) in ( Set , × , ⊤ ) is ∆: A → A ⊗ A ; a �→ a L ⊗ a R with functions L : A → A ; a �→ a L and R : A → A ; a �→ a R . Proposition: If ( A, ∆) is counital, then ∆: a �→ a ⊗ a . (Each element a is setlike .) 1 A ⊗ ε � A ⊗ A A ⊗ 1 Proof: The counital diagram � ❏❏❏❏❏❏❏❏❏❏ ∆ ρ − 1 ε ⊗ 1 A A 1 ⊗ A A λ − 1 A a L ⊗ a R ✤ 1 A ⊗ ε � so a L = a = a R . a ⊗ x � yields , ❴ � ❑❑❑❑❑❑❑❑❑❑❑✤ ∆ ρ − 1 ε ⊗ 1 A A ❴ ☛ x ⊗ a a λ − 1 A

  43. Bimagmas

  44. � � � � � � � Bimagmas Bimagma ( A, ∇ , ∆) with A ❙ ❙ ❦ ❦ ❙ ❦ ❙ ❦ ❙ ❦ ❙ ∇ ❦ ❙ ∆ ❦ ❙ ❦ ❙ ❦ ❙ ❦ ❙ ❦ ❙ ❦ ❙ ❦ ❙ ❦ ❙ ❦ ❙ ❦ A ⊗ A A ⊗ A ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ∆ ⊗ ∆ ❚ ∇⊗∇ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ A ⊗ A ⊗ A ⊗ A A ⊗ A ⊗ A ⊗ A 1 A ⊗ τ ⊗ 1 A

  45. � � � � � � � Bimagmas Bimagma ( A, ∇ , ∆) with A ❙ ❙ ❦ ❦ ❙ ❦ ❙ ❦ ❙ ❦ ❙ ∇ ❦ ❙ ∆ ❦ ❙ ❦ ❙ ❦ ❙ ❦ ❙ ❦ ❙ ❦ ❙ ❦ ❙ ❦ ❙ ❦ ❙ ❦ A ⊗ A A ⊗ A ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ∆ ⊗ ∆ ❚ ∇⊗∇ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ ❚ ❥ A ⊗ A ⊗ A ⊗ A A ⊗ A ⊗ A ⊗ A 1 A ⊗ τ ⊗ 1 A     ∆ magma     So  is a  homomorphism. ∇ comagma  

  46. Biunital bimagmas

  47. Biunital bimagmas A biunital bimagma is a unital and counital bimagma ( A, ∇ , ∆ , η, ε )

  48. � � � � � � Biunital bimagmas A biunital bimagma is a unital and counital bimagma ( A, ∇ , ∆ , η, ε ) with commuting biunitality diagram ∇ 1 ∆ � 1 1 ⊗ 1 1 ⊗ 1 1 � ❃❃❃❃❃❃❃ � ������� η ⊗ η ε ⊗ ε ε η ∇ ∆ A ⊗ A A A ⊗ A

  49. � � � � � � Biunital bimagmas A biunital bimagma is a unital and counital bimagma ( A, ∇ , ∆ , η, ε ) with commuting biunitality diagram ∇ 1 ∆ � 1 1 ⊗ 1 1 ⊗ 1 1 � ❃❃❃❃❃❃❃ � ������� η ⊗ η ε ⊗ ε ε η ∇ ∆ A ⊗ A A A ⊗ A     ∆ unital magma     So  is a  homomorphism. ∇ counital comagma  

  50. Quantum quasigroups and loops

  51. Quantum quasigroups and loops A quantum quasigroup is a bimagma ( A, ∇ , ∆) with invertible

  52. Quantum quasigroups and loops A quantum quasigroup is a bimagma ( A, ∇ , ∆) with invertible ∆ ⊗ 1 A � A ⊗ A ⊗ A 1 A ⊗∇ � A ⊗ A left composite A ⊗ A

  53. Quantum quasigroups and loops A quantum quasigroup is a bimagma ( A, ∇ , ∆) with invertible ∆ ⊗ 1 A � A ⊗ A ⊗ A 1 A ⊗∇ � A ⊗ A left composite A ⊗ A and 1 A ⊗ ∆ � A ⊗ A ⊗ A ∇⊗ 1 A � A ⊗ A . right composite A ⊗ A

  54. Quantum quasigroups and loops A quantum quasigroup is a bimagma ( A, ∇ , ∆) with invertible ∆ ⊗ 1 A � A ⊗ A ⊗ A 1 A ⊗∇ � A ⊗ A left composite A ⊗ A and 1 A ⊗ ∆ � A ⊗ A ⊗ A ∇⊗ 1 A � A ⊗ A . right composite A ⊗ A A quantum loop is a biunital bimagma ( A, ∇ , ∆ , η, ε ) in which the reduct ( A, ∇ , ∆) is a quantum quasigroup.

  55. Quantum quasigroups and loops A quantum quasigroup is a bimagma ( A, ∇ , ∆) with invertible ∆ ⊗ 1 A � A ⊗ A ⊗ A 1 A ⊗∇ � A ⊗ A left composite A ⊗ A and 1 A ⊗ ∆ � A ⊗ A ⊗ A ∇⊗ 1 A � A ⊗ A . right composite A ⊗ A A quantum loop is a biunital bimagma ( A, ∇ , ∆ , η, ε ) in which the reduct ( A, ∇ , ∆) is a quantum quasigroup. Remark: These definitions are self-dual,

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend