elementary mechanisms of deformation in amorphous solids
play

Elementary Mechanisms of Deformation in Amorphous Solids Anal - PowerPoint PPT Presentation

Elementary Mechanisms of Deformation in Amorphous Solids Anal Lematre Rhophysique Amorphous materials are, well... disordered In crystals In disordered materials defects = dislocations No topological order => defects? (Volterra,


  1. Elementary Mechanisms of Deformation in Amorphous Solids Anaël Lemaître Rhéophysique

  2. Amorphous materials are, well... disordered In crystals In disordered materials defects = dislocations No topological order => defects? (Volterra, 1930; SEM, 1960) Interaction and motion understoon (Peierls, Nabarro, Friedel, 1950's) Dislocation dynamics in computer What are the elementary mechanisms codes since the 1980's of deformation? How can we up-scale the dynamics?

  3. Length and energy scales in amorphous materials Hard glasses Soft glasses Polymers Colloids Foams Metallic/oxyde glasses Length scales 0.1 µ m's   Length scales nm's Energies ~ kT = 1/40 eV Energies ~ 0.1—1 eV Stresses ~ Pa—kPa Stresses ~ GPa Can we identify some mechanisms of deformation, at least for broad classes of materials, or time-, energy-, length-scales?

  4. Deformation map for a metallic glass Schuh et al , Acta Mat. 55, 4067 (2007)

  5. Deformation map for a metallic glass   ˙ Schuh et al , Acta Mat. 55, 4067 (2007)

  6. Deformation map for a metallic glass   ˙ Schuh et al , Acta Mat. 55, 4067 (2007)

  7. What are the elementary mechanisms of deformation in amorphous solids? Argon (1979): stress-induced hopping among inherent states local shear transformations = flips In real space In PEL

  8. log ˙  The AQS limit Glass Liquid Low temperature: 0 T / T g 1 T < T g γ≪ 1 / τ α ˙ AQS: Neglect any thermally activated process Athermal quasi-static − 1 ≪ ˙ − 1 τ α γ≪τ irr.

  9. Plasticity in a low-T (finite-sized) glass: The system resides at all times in local energy minima L

  10. Plasticity in a low-T (finite-sized) glass: The system resides at all times in local energy minima It track reversibly strain-induced changes in minima L

  11. Plasticity in a low-T (finite-sized) glass: The system resides at all times in local energy minima It track reversibly strain-induced changes in minima L

  12. Plasticity in a low-T (finite-sized) glass: The system resides at all times in local energy minima It track reversibly strain-induced changes in minima Occasionally the occupied minimum L becomes unstable: A plastic event then occurs leading to a new local minimum

  13. Athermal, quasi-static protocol: - Minimize energy - Apply a small increment of strain (homogeneously) - Repeat The system resides at all times in local energy minima It track reversibly strain-induced changes in minima Occasionally the occupied minimum L becomes unstable: A plastic event then occurs leading to a new local minimum

  14. Athermal, quasi-static protocol: - Minimize energy Plastic events - Apply a small increment of strain (homogeneously) - Repeat Elastic branches σ L

  15. L = 20 L = 40 σ γ

  16. L = 20,40,80,160 σ 2 Δσ N /Δγ γ

  17. AQS I: Saddle-node bifurcation σ∼− A √ γ c −γ ~− A /   c − 3 / 2 Δ E ∼(γ c −γ) C. Maloney et al, PRL 93, 195501 (2004)

  18. AQS II: Eshelby quadrupolar events Onset of an event

  19. AQS III: Avalanches Full plastic event = avalanche

  20. AQS III: Avalanches In 2D C. Maloney and AL, PRL 93, 016001 (2004);  E ~ L PRE 74, 016118 (2006) E. Lerner and I. Procaccia, PRE 79, 066109 (2009)  , = 0.74  E ~ L In 3D N. Bailey et al PRL 98, 095501 (2007) 1.4  E ~ L

  21. Particle displacement distribution in AQS =∂ y u x −∂ x u y Maloney & Robbins, J. Phys. Cond. Mat. 20, 244128 (2008)

  22. log ˙  Athermal, finite-strain rate Glass Liquid 0 T / T g 1

  23. log ˙  Athermal, finite-strain rate Glass Liquid 0 T / T g 1 − 12 − 2 r − 6  U = k  r Binary Lennard-Jones AL and C. Caroli, PRL 103, 065501 (2009) T = 0 ≠ 0 ˙ Athermal, finite strain-rate simulations: - Standard MD simulation f ij = m   r   v j − v i  - Damping forces

  24. log ˙  Athermal, finite-strain rate Non-affine Glass Liquid velocity v i − ˙   y i  0 e x T / T g 1 AL and C. Caroli, PRL 103, 065501 (2009) T = 0 ≠ 0 ˙ Athermal, finite strain-rate simulations: - Standard MD simulation f ij = m   r   v j − v i  - Damping forces

  25. Athermal, finite strain-rate Non-affine velocity v i − ˙   y i  e x L = 160 − 5 = 5.10 ˙ PRL 103, 065501 (2009) − 4 T  10

  26. Deformation maps  xy  r  = 1% = 5% = 20%

  27. γ= 10 − 4 γ= 10 − 2 ˙ ˙ Δ γ= 1%

  28. How slow should we drive an athermal system to reach the AQS limit?  ˙    t t 〈 t 〉≫ Average interval event duration

  29. What is the noise received by a weak zone? L System size: 2 ˙ R flip = L  Total flip rate: 2   0 a a 1 / R flip ~ a / c s

  30. What is the noise received by a weak zone? L System size: 2 ˙ R flip = L  Total flip rate: 2   0 l a 2 ˙  R near = l 2  0 a a 1 / R near ~ a / c s l Now isolate a nearby region of size Near field signals are separated iff: 1 / R near ≫τ ⇔ l ≪ √ a 2 Δϵ 0 / ˙ γ τ flip

  31. What is the noise received by a weak zone? L System size: 2 ˙ R flip = L  Total flip rate: 2   0 l a 2 ˙  R near = l Background noise: 2 − l 2  ˙ R back =  L  2  0 a 2   0 a τ During time a Local stress diffuses by:  2 a 2   0 / l 2  〈 2 〉~ ˙ 1 / R near ~ a / c s l Now isolate a nearby region of size Near field signals are separated iff: 1 / R near ≫τ ⇔ l ≪ √ a 2 Δϵ 0 / ˙ γ τ flip

  32. What is the noise received by a weak zone? L System size: 2 ˙ R flip = L  Total flip rate: 2   0 l a 2 ˙  R near = l Background noise: 2 − l 2  ˙ R back =  L  2  0 a 2   0 a τ During time a Local stress diffuses by:  2 a 2   0 / l 2  〈 2 〉~ ˙ 1 / R near ~ a / c s l Now isolate a nearby region of size Near field signals are separated iff: 1 / R near ≫τ ⇔ l ≪ √ a 2 Δϵ 0 / ˙ γ τ flip  〈  2 〉≪ a 2   0 / l 2 

  33. How to characterize avalanches? Transverse diffusion coefficient 〈 y 2 〉 y L=160   L=80 L=40 L=20 L=10   〈 y 2 〉  D = D / ˙    with L

  34. Plasticity-induced diffusion e   y i = ∑ f u y 2 〉= N e   〈 u y 2 〉 e 〈 y r i −  r f  ⇒ Over a large strain interval: Events = single flips Events = linear avalanches y 2   N f  = L 2  0 a l 2  0 u = 2 a x y  4  r Eshelby:  r N a  = N f  / l 4  0 2  L  2 〉 f = a 4   0 2  2 2 2 〉 a = a l 〈 u y ln  L / a  〈 u y ln  L / l  4  2  2   0 2  0   = a 2 〉   = a 2 〉 〈 y 〈 y  l ln  L / l  ln  L / a  4  4  AL and C. Caroli, PRL 103, 065501 (2009) Chattoraj et al, PRE 011501 (2011)

  35. Athermal, finite strain rate: transverse diffusion  2   0   = a 2 〉 D D ≡〈 y   l ln  L / l  4  Large ˙   ⇒ l ~ a D ~ ln L  ⇒   0 l ~ L D ~ L ˙ QS regime L ∝ 1 /  ˙ D / L = f  L  ˙  ⇒ l  ˙   Using

  36. Athermal, finite strain rate: transverse diffusion 2   0   = a 2 〉 D ≡〈 y   D / L  l ln  L / l  4  Large ˙   ⇒ l ~ a D ~ ln L  ⇒   0 l ~ L D ~ L ˙ QS regime L  ˙  ∝ 1 /  ˙ D / L = f  L  ˙  ⇒ l  ˙   Using

  37. Relevance of avalanche size 1 / 3 Extension to 3D l  ˙ ~ a   0 / ˙  flip  − 13 sec ⇒ For atomic glass, with  LJ ~ 10   0 ~ 5% a ∼ 1 nm  ≤ 10 − 3 s − 1 l ≥ 1  m For ˙ (see: Nieh et al (2002)) 2D flow curve   ˙  = 0.74  4.87  ˙  − y ≈ ˙   av  guess:  av ~ l / c s event duration: (domino-like avalanches) ⇒ = y  C  ˙   ˙ 2   0 C =  c s a  ≈ 13

  38. log ˙  Athermal, finite-strain rate Glass Liquid  xy  r  0 T / T g L 1 Avalanche size = 10% = 1% = 5% − 1 / D l  ˙ ∝ ˙  2  c ∝ 1 / L ˙ D  L ˙ l  ˙ ∝ L L  ˙ 

  39. log ˙  At finite temperature Glass Liquid 0 T / T g L 1 Avalanche size − 1 / D l  ˙ ∝ ˙  2  c ∝ 1 / L ˙ l  ˙ ∝ L

  40. log ˙  At finite temperature  = 1%  = 5%  = 10% Glass Liquid T = 0.3 0 T / T g L 1 Avalanche size − 1 / D l  ˙ ∝ ˙  T = 0.2 2  c ∝ 1 / L ˙ l  ˙ ∝ L T = 0.025 Chattoraj et al PRL 105, 266001 (2010) ≠ 0 T ≠ 0 ˙ Finite T, finite strain-rate simulations: - Standard MD simulation - Velocity rescaling

  41. At finite T For independent  D ~ ln L events: Stronger than log Chattoraj et al PRE (2011)

  42. At finite T ∝ 1 /  ˙ l  ˙  Chattoraj et al PRE (2011)

  43. 〈 y 2 〉 At finite T D = lim    ∞  t   ˙ ≠ 0 T ≠ 0 ˙ Finite T, finite strain-rate simulations: - Standard MD simulation Chattoraj et al, PRE 2011 - Velocity rescaling

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend