ei331 signals and systems
play

EI331 Signals and Systems Lecture 9 Bo Jiang John Hopcroft Center - PowerPoint PPT Presentation

EI331 Signals and Systems Lecture 9 Bo Jiang John Hopcroft Center for Computer Science Shanghai Jiao Tong University March 26, 2019 Contents 1. Eigenvalues and Eigenfunctions 2. CT Fourier Series 3. Properties of CT Fourier Series 1/31


  1. EI331 Signals and Systems Lecture 9 Bo Jiang John Hopcroft Center for Computer Science Shanghai Jiao Tong University March 26, 2019

  2. Contents 1. Eigenvalues and Eigenfunctions 2. CT Fourier Series 3. Properties of CT Fourier Series 1/31

  3. Recap R n DT signals C Z CT signals { δ k : k ∈ Z } { δ τ : τ ∈ R } 1 basis { e 1 , . . . , e n } � � � n general x x = x = x [ k ] δ k x = x ( τ ) δ τ d τ x k e k R k = 1 k ∈ Z Image under linear transformation basis { f 1 , . . . , f n } { h k : k ∈ Z } { h τ : τ ∈ R } � � � n general x Ax = T ( x ) = x [ k ] h k T ( x ) = x ( τ ) h τ d τ x k f k R k = 1 k ∈ Z LTI – T ( x ) = x ∗ h T ( x ) = x ∗ h 1 Not standard usage of term “basis”; understood in terms of integral representation on next line. 2/31

  4. Eigenvalues and Eigenvectors In linear algebra, v ∈ R n is eigenvector of matrix A with associated eigenvalue λ , if Av = λ v Suppose A has n distinct eigenvalues λ 1 , . . . , λ n associated to eigenvectors v 1 , . . . , v n , respectively. • v 1 , . . . , v n form a basis of R n , i.e. ∀ x ∈ R n has following representation � n x = a k v k k = 1 • image under A � n � n Ax = a k Av k = a k λ k v k k = 1 k = 1 3/31

  5. Change of Basis standard basis eigenbasis of A basis vectors { e 1 , . . . , e n } { v 1 , . . . , v n } � n � n decomposition x = x = x k e k a k v k k = 1 k = 1 � n � n image under A Ax = Ax = a k λ k v k x k f k k = 1 k = 1 Expansions of x and Ax • in standard basis: same coefficients { x k } , different basis vectors { e k } �→ { f k } • in eigenbasis: same basis vectors { v k } , different coefficients { a k } �→ { λ k a k } 4/31

  6. Change of Basis standard basis eigenbasis basis vectors { δ k : k ∈ Z } ? � DT decomposition x = x [ k ] δ k k ∈ Z � image under T T ( x ) = x [ k ] h k k ∈ Z “standard basis” eigenbasis basis vectors { δ τ : τ ∈ R } ? � CT x = x ( τ ) δ τ d τ decomposition R � T ( x ) = x ( τ ) h τ d τ image under T R 5/31

  7. Eigenvalues and Eigenfunctions of LTI Systems CT Exponential e st � � h ( τ ) e s ( t − τ ) d τ = e st h ( τ ) e − s τ d τ, T ( e st ) = R R e st is eigenfunction of T with associated eigenvalue � h ( τ ) e − s τ d τ H ( s ) = (system function) R DT Exponential z n � h [ k ] z n − k d τ = z n � T ( z n ) = h [ k ] z − k , k ∈ Z k ∈ Z z n is eigenfunction of T with associated eigenvalue � h [ k ] z − k H ( z ) = (system function) k ∈ Z 6/31

  8. Response to Linear Combination of Eigenfunctions �� � � a k e s k t a k H ( s k ) e s k t CT = T k k �� � � a k z n a k H ( z k ) z n = DT T k k k k Input vs. output • linear combinations of same exponentials • different coefficients { a k } �→ { H ( s k ) a k } / { H ( z k ) a k } Questions • Which functions are linear combinations of exponentials? • How to find coefficients a k ? Fourier analysis focuses on e j ω t for CT and e j ω n for DT 7/31

  9. Contents 1. Eigenvalues and Eigenfunctions 2. CT Fourier Series 3. Properties of CT Fourier Series 8/31

  10. CT Fourier Series Recall CT signal is periodic with period T if x ( t ) = x ( t + T ) , ∀ t ∈ R x = τ T x or • fundamental period T : smallest positive period • fundamental frequency ω 0 = 2 π T sin( ω 0 t ) , cos( ω 0 t ) , e j ω 0 t periodic with fundamental frequency ω 0 Fourier series represent periodic signals in terms of harmonically related sinusoids or complex exponentials � ∞ x ( t ) = a 0 + [ a k cos( k ω 0 t ) + b k sin( k ω 0 t )] k = 1 � ∞ c k e jk ω 0 t x ( t ) = k = −∞ 9/31

  11. Joseph Fourier 1807, M´ emoire sur la propagation de la chaleur dans les corps solides ( Memoir on the propagation of heat in solid bodies ) 1822, Th´ eorie analytique de la chaleur ( The Analytical Theory of Heat ) Jean-Baptiste Joseph Fourier (from Wikipedia) ( https://gallica.bnf.fr ) 10/31

  12. Harmonics ω ω 0 2 ω 0 3 ω 0 4 ω 0 5 ω 0 6 ω 0 0 | k | : harmonic # 0 3 5 6 1 2 4 D f s t f fi s u h o e f i C u t x n i c r h t d d r h o t a h n h h h a m d a h a r e r a m h r m n m r a o m t o r o a n m n o n l i c i / n i o c c i fi n c r i s c t h a r m o n i c 11/31

  13. Harmonics ω ω 0 2 ω 0 3 ω 0 4 ω 0 5 ω 0 6 ω 0 0 t T = 2 π ω 0 t T = 2 π ω 0 12/31

  14. Orthonormality of Harmonics Recall for k � = 0 , � b e jk ω 0 t dt = e jk ω 0 b − e jk ω 0 a jk ω 0 a Since e jk ω 0 t has period T , over any period � � t 0 + T 1 e jk ω 0 t dt = 1 e jk ω 0 t dt = δ [ k ] T T T t 0 Define inner product between two signals with period T by � � f , g � = 1 f ( t ) g ( t ) dt T T { e jk ω 0 t : k ∈ Z } is orthonormal system of functions � � e jk ω 0 t , e jm ω 0 t � = 1 e j ( k − m ) ω 0 t dt = δ km = δ [ k − m ] T T 13/31

  15. Orthogonality of Harmonics For sines and cosines, � sin( k ω 0 t ) , sin( m ω 0 t ) � = 1 2 δ [ k − m ] − 1 2 δ [ k + m ] � cos( k ω 0 t ) , cos( m ω 0 t ) � = 1 2 δ [ k − m ] + 1 2 δ [ k + m ] � sin( k ω 0 t ) , cos( m ω 0 t ) � = 0 Proof. Use Euler’s formula and orthonormality of { e jk ω 0 t : k ∈ Z } 14/31

  16. Orthogonality of Harmonics sin( ω 0 t ) t O T = 2 π sin( 2 ω 0 t ) ω 0 sin( ω 0 t ) t O T = 2 π cos( ω 0 t ) ω 0 15/31

  17. Fourier Coefficients Suppose x has period T and Fourier series representation � ∞ ω 0 = 2 π c k e jk ω 0 t , x ( t ) = T k = −∞ Find Fourier coefficients using orthonormality of { e jk ω 0 t } � ∞ � x , e jm ω 0 t � = � c k e jk ω 0 t , e jm ω 0 t � k = −∞ � ∞ c k � e jk ω 0 t , e jm ω 0 t � = k = −∞ � ∞ = c k δ [ m − k ] = c m k = −∞ 16/31

  18. Complex Fourier Series Synthesis equation � � ∞ ∞ x [ k ] e jk ω 0 t = x [ k ] e jk 2 π T t x ( t ) = ˆ ˆ k = −∞ k = −∞ N -th partial sum � N x [ k ] e jk ω 0 t S N ( x )( t ) = ˆ k = − N Analysis equation � � x [ k ] = � x , e jk ω 0 t � = 1 x ( t ) e − jk ω 0 t dt = 1 x ( t ) e − jk 2 π T t dt ˆ T T T T 17/31

  19. Trigonometric Fourier Series For sines and cosines, � sin( k ω 0 t ) , sin( m ω 0 t ) � = 1 2 δ [ k − m ] − 1 2 δ [ k + m ] � cos( k ω 0 t ) , cos( m ω 0 t ) � = 1 2 δ [ k − m ] + 1 2 δ [ k + m ] � sin( k ω 0 t ) , cos( m ω 0 t ) � = 0 Synthesis equation � ∞ x ( t ) = a 0 + [ a k cos( k ω 0 t ) + b k sin( k ω 0 t )] k = 1 Analysis equation � � a k = 2 − δ [ k ] b k = 2 x ( t ) cos( k ω 0 t ) dt , x ( t ) sin( k ω 0 t ) dt T T T T 18/31

  20. Equivalence of Two Forms Complex form � ∞ x [ k ] e jk ω 0 t x ( t ) = ˆ k = −∞ Trigonometric form � ∞ x ( t ) = a 0 + [ a k cos( k ω 0 t ) + b k sin( k ω 0 t )] k = 1 Conversion of coefficients (by Euler’s formula)     a 0 = ˆ x [ 0 ] x [ 0 ] = a 0 ˆ   x [ k ] = 1 a k = ˆ x [ k ] + ˆ x [ − k ] , k ≥ 1 ˆ 2 ( a k − jb k ) , k ≥ 1     x [ k ] = 1 b k = j (ˆ x [ k ] − ˆ x [ − k ]) , k ≥ 1 ˆ 2 ( a k + jb − k ) , k ≤ − 1 Negative frequencies in complex form introduced for mathematical convenience, no physical significance 19/31

  21. Examples Example. x ( t ) = e j ω 0 t , ˆ x [ k ] = δ [ k − 1 ] 1 Spectrum ˆ x [ k ] − 3 − 2 − 1 0 1 2 3 k 2 e j ω 0 t + e − j φ Example. x ( t ) = cos( ω 0 t + φ ) = e j φ 2 e − j ω 0 t , x [ 1 ] = 1 x [ − 1 ] = 1 2 e j φ , 2 e − j φ , ˆ , ˆ x [ k ] = 0 , k � = ± 1 ˆ 1 1 2 2 Magnitude spectrum | ˆ x [ k ] | − 3 − 2 − 1 0 1 2 3 k φ − 1 Phase spectrum arg ˆ x [ k ] − 3 − 2 0 1 2 3 k − φ 20/31

  22. Example: Triangle Wave In one period, x ( t ) = 1 − 2 | t | | t | ≤ T T , 2 x ( t ) t − T T 2 2 Fourier coefficients � � � T / 2 1 − 2 | t | x [ 0 ] = 1 dt = 1 k = 0 , ˆ T T 2 − T / 2 � � � T / 2 1 − 2 | t | x [ k ] = 1 2 e − jk ω 0 t dt = k � = 0 , k odd , ˆ π 2 k 2 T T − T / 2 k � = 0 , k even , x [ k ] = 0 ˆ 21/31

  23. Example: Triangle Wave  1  2 , k = 0  ˆ x [ k ] = 2 π 2 k 2 , k � = 0 odd   0 , k � = 0 even Spectrum for fixed T , frequency spacing ∆ ω = 2 π T ω k = k 2 π 1 T 2 − 6 − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5 6 k 22/31

  24. Example: Triangle Wave � 0 x [ k ] e jk ω 0 t S 0 ( x )( t ) = ˆ k = − 0 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 23/31

  25. Example: Triangle Wave � 1 x [ k ] e jk ω 0 t S 1 ( x )( t ) = ˆ k = − 1 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 23/31

  26. Example: Triangle Wave � 3 x [ k ] e jk ω 0 t S 3 ( x )( t ) = ˆ k = − 3 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 23/31

  27. Example: Triangle Wave � 5 x [ k ] e jk ω 0 t S 5 ( x )( t ) = ˆ k = − 5 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 23/31

  28. Example: Triangle Wave � 7 x [ k ] e jk ω 0 t S 7 ( x )( t ) = ˆ k = − 7 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 23/31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend