ei331 signals and systems
play

EI331 Signals and Systems Lecture 7 Bo Jiang John Hopcroft Center - PowerPoint PPT Presentation

EI331 Signals and Systems Lecture 7 Bo Jiang John Hopcroft Center for Computer Science Shanghai Jiao Tong University March 19, 2019 Contents 1. Causal LTI Systems Described by Differential Equations 1.1 Initial Rest 1.2 Jump from 0 to 0


  1. EI331 Signals and Systems Lecture 7 Bo Jiang John Hopcroft Center for Computer Science Shanghai Jiao Tong University March 19, 2019

  2. Contents 1. Causal LTI Systems Described by Differential Equations 1.1 Initial Rest 1.2 Jump from 0 − to 0 + 1.3 Higher-order ODE 1.4 Systems of First-order ODEs 1.5 Second Recipe for Higher-order ODE 1/31

  3. Initial Rest Often work with right-sided inputs, i.e. x ( t ) = 0 for t < t 0 • stimulus turned on at some point Initial rest condition • If input x ( t ) = 0 for t < t 0 , output y ( t ) = 0 for t < t 0 ◮ output zero until changed by input (cf. Newton’s law) ◮ equivalent to causality for linear systems • Adapt initial time t 0 to input x : if x becomes nonzero at t 0 , use y ( k ) ( t 0 ) = 0 for k = 0 , 1 , . . . , N − 1 , i.e. solve � L y y = f y ( k ) ( t 0 ) = 0 , k = 0 , 1 , . . . , N − 1 Linear constant-coefficient ODE with initial rest condition specifies causal and LTI system for right-sided inputs 2/31

  4. Initial Rest Example. Newton’s second law mx ′′ ( t ) = f ( t ) Initial rest • stays at origin x = 0 • zero velocity v = 0 (at rest!) • stays so unless changed by external force (Newton’s first law) If force starts at t = 0 • x ( 0 ) = 0 , v ( 0 ) = x ′ ( 0 ) = 0 f If force starts on at t = 1 • x ( 1 ) = 0 , v ( 1 ) = x ′ ( 1 ) = 0 3/31

  5. Initial Rest Example. RLC circuit C d 2 dt 2 v ( t ) + 1 dtv ( t ) + 1 d Lv ( t ) = d dti S ( t ) R Initial rest • no stored energy in L , C + i S ( t ) i R i L i C • zero voltage and current v ( t ) R R L C If source on at t = 0 • v ( 0 ) = 0 − • i C ( 0 ) = Cv ′ ( 0 ) = 0 If source on at t = 1 • v ( 1 ) = 0 • i C ( 1 ) = Cv ′ ( 1 ) = 0 4/31

  6. Initial Rest General IVP with first-order ODE � y ′ ( t ) + ay ( t ) = f ( t ) y ( t 0 ) = y 0 Solution � t y 0 e − a ( t − t 0 ) f ( τ ) e − a ( t − τ ) d τ y ( t ) = + � �� � t 0 zero-input response � �� � zero-state response Initial rest: zero-input response always 0; take t 0 → −∞ � t � t f = f · τ t 0 u f ( τ ) e − a ( t − τ ) d τ f ( τ ) e − a ( t − τ ) d τ y ( t ) = = = = = ⇒ y ( t ) = u ( t − t 0 ) t 0 −∞ 5/31

  7. Initial Rest Example. y ′ ( t ) + 2 y ( t ) = x ( t ) with initial rest condition and input x ( t ) = u ( t + 1 ) Response � t � t x ( τ ) e − 2 ( t − τ ) d τ = u ( τ + 1 ) e − 2 ( t − τ ) d τ y ( t ) = −∞ −∞ For t < − 1 � t 0 · e − 2 ( t − τ ) d τ = 0 y ( t ) = −∞ For t > − 1 � t e − 2 ( t − τ ) d τ = 1 2 ( 1 − e − 2 ( t + 1 ) ) y ( t ) = − 1 6/31

  8. Non-initial Rest Example. y ′ ( t ) + 2 y ( t ) = x ( t ) with initial condition y ( 0 ) = 0 and input x ( t ) = u ( t + 1 ) Response � t � t x ( τ ) e − 2 ( t − τ ) d τ = u ( τ + 1 ) e − 2 ( t − τ ) d τ y ( t ) = 0 0 For t > − 1 � t e − 2 ( t − τ ) d τ = 1 2 ( 1 − e − 2 t ) y ( t ) = 0 For t < − 1 � − 1 e − 2 ( t − τ ) d τ = 1 2 ( e − 2 − 1 ) e − 2 t y ( t ) = 0 7/31

  9. Comparison of Initial Conditions Example. y ′ ( t ) + 2 y ( t ) = u ( t + 1 ) y x y ( 0 ) = 0 1 1 2 t t − 1 0 − 1 0 y initial rest 1 2 1 2 ( 1 − e 2 ) t − 1 0 8/31

  10. Jump from 0 − to 0 + Need more care for initial condition with singular input Example. What’s impulse response of causal LTI system described by y ′ ( t ) + 2 y ( t ) = x ( t ) with initial rest condition? Method 1. Solve � h ′ ( t ) + 2 h ( t ) = δ ( t ) h ( 0 ) = 0 • For t � = 0 , reduces to � h ′ ( t ) + 2 h ( t ) = 0 h ( 0 ) = 0 • General solution h ( t ) = Ae − 2 t for t � = 0 ⇒ h ( t ) = 0 for t � = 0 , something wrong � • h ( 0 ) = 0 = 9/31

  11. Jump from 0 − to 0 + Need more care for initial condition with singular input Example. What’s impulse response of causal LTI system described by y ′ ( t ) + 2 y ( t ) = x ( t ) with initial rest condition? Method 2. Response � t x ( τ ) e − 2 ( t − τ ) d τ = ⇒ h ( t ) = e − 2 t u ( t ) y ( t ) = −∞ Observation: h discontinuous at t = 0 • h ( 0 − ) = 0 , h ( 0 + ) = 1 , due to singularity of δ at t = 0 • For t > 0 , � t � t δ ( τ ) e − 2 ( t − τ ) d τ = δ ( τ ) e − 2 ( t − τ ) d τ h ( t ) = 0 − −∞ 10/31

  12. Jump from 0 − to 0 + IVP � � y ′ ( t ) + ay ( t ) = f ( t ) y ′ ( t ) + ay ( t ) = f ( t ) vs. y ( 0 − ) = y 0 y ( 0 + ) = y 0 Solution � t y ( t ) = y ( 0 − ) e − at + f ( τ ) e − a ( t − τ ) d τ 0 − vs. � t y ( t ) = y ( 0 + ) e − at + f ( τ ) e − a ( t − τ ) d τ 0 + Initial rest: use y ( 0 − ) = 0 � 0 + f ( τ ) e a τ d τ y ( 0 + ) = y ( 0 − ) + 0 − • if f ( τ ) has no singularity at τ = 0 , y ( 0 + ) = y ( 0 − ) = 0 • if f ( τ ) has singularity at τ = 0 , y ( 0 + ) may be different 11/31

  13. Jump from 0 − to 0 + Example. Impulse response of y ′ ( t ) + 2 y ( t ) = x ( t ) revisited. � h ′ ( t ) + 2 h ( t ) = δ ( t ) h ( 0 − ) = 0 • For t � = 0 , reduces to � � h ′ ( t ) + 2 h ( t ) = 0 , t > 0 h ′ ( t ) + 2 h ( t ) = 0 , t < 0 h ( 0 − ) = 0 h ( 0 − ) = 0 • General solution h ( t ) = A + e − 2 t u ( t ) + A − e − 2 t u ( − t ) • A + = h ( 0 + ) , but used A + = A − = h ( 0 − ) = 0 in first try � � t h ( t ) = h ( 0 − ) e − at + δ ( τ ) e − a ( t − τ ) d τ 0 + 12/31

  14. Recipe for IVP with First-order ODE IVP � y ′ ( t ) + ay ( t ) = f ( t ) y ( t 0 ) = y 0 Solution for all cases � t y ( t ) = y ( t 0 ) e − a ( t − t 0 ) + f ( τ ) e − a ( t − τ ) d τ t 0 • If t 0 means t 0 + or t 0 − , be consistent in all places! • Matters only if f has singularity at t 0 Initial rest � t f ( τ ) e − a ( t − τ ) d τ y ( t ) = −∞ 13/31

  15. Higher-order ODE N d k � Ly = a k dt k y = f , ( a N � = 0 ) k = 0 General solution y = + y h y p ���� ���� homogeneous solution particular solution Characteristic equation N � a k λ k = 0 k = 0 � d � k dt → λ ; note d k • LHS obtained from L by substituion d dt k = dt • N (complex) roots by Fundamental Theorem of Algebra (root of multiplicity k counted as k roots) 14/31

  16. Higher-order ODE Homogeneous solution • r distinct characteristic roots λ i of multiplicity m i , i = 1 , 2 , . . . , r (note � r i = 1 m i = N ) • Homogeneous solution takes form r m i � � A ik t k − 1 e λ i t y h ( t ) = i = 1 k = 1 i.e. space of all homogeneous solutions has basis e λ 1 t , te λ 1 t , . . . , t m 1 − 1 e λ 1 t ; . . . ; e λ r t , te λ r t , . . . , t m r − 1 e λ r t . • When a k ∈ R , ∀ k , complex roots σ ± j ω appear in pairs ◮ in calculus, used e σ t cos( ω t ) and e σ t sin( ω t ) ◮ here, use e ( σ + j ω ) t and e ( σ − j ω ) t ◮ equivalent by Euler’s formula 15/31

  17. Higher-order ODE Particular solution • Look for forced response of same form as input f f y p p � t p , 0 not characteristic root B k t k k = 0 p � B k t m + k t p , 0 characteristic root of multiplicity m k = 0 e at , a not characteristic root Be at e λ i t , λ i characteristic root of multiplicity m i Bt m i e λ i t 2 ( e j ω t + e − j ω t ) and sin( ω t ) = 1 2 j ( e j ω t − e − j ω t ) are Note cos( ω t ) = 1 special cases 16/31

  18. IVP with Second-order ODE Example. Second-order system y ′′ + 3 y ′ + 2 y = x at initial rest. Let x ( t ) = e − t u ( t ) . • Characteristic equation λ 2 + 3 λ + 2 = 0 = ⇒ λ 1 = − 1 , λ 2 = − 2 • Homogeneous solution y h ( t ) = A 1 e − t + A 2 e − 2 t • For t > 0 , particular solution y p ( t ) = Bte − t p ( t ) + 2 y p ( t ) = Be − t = x ( t ) = e − t = y ′′ p ( t ) + 3 y ′ ⇒ B = 1 • General solution y ( t ) = te − t + A 1 e − t + A 2 e − 2 t ⇒ y ( t ) = te − t + e − 2 t − e − t • Initial rest y ( 0 ) = y ′ ( 0 ) = 0 = 17/31

  19. Systems of First-order ODEs Consider N -th order ODE with a N = 1 (WLOG) y ( N ) + a N − 1 y ( N − 1 ) + · · · + a 1 y ′ + a 0 y = f (1) Let Y k = y ( k ) , k = 0 , 1 , . . . , N − 1 • Y ′ k = Y k + 1 for k = 0 , 1 , . . . , N − 2 N − 1 = y ( N ) = f − � N − 1 k = 0 a k y ( k ) = f − � N − 1 • Y ′ k = 0 a k Y k (1) equivalent to Y ′ = AY + bf where       . . . Y 0 0 1 0 0 0 0 . . .  Y 1   0 0 1 0 0   0        . . . . . . . ...  .   . . . . .   .  Y = , A = , b = . . . . . . .             . . . Y N − 2 0 0 0 0 1 0       Y N − 1 − a 0 − a 1 − a 2 − a 3 . . . − a N − 1 1 18/31

  20. Systems of First-order ODEs Initial value problem (IVP) � y ( N ) + a N − 1 y ( N − 1 ) + · · · + a 1 y ′ + a 0 y = f (2) y ( k ) ( t 0 ) = y k , k = 0 , 1 , . . . , N − 1 equivalent to � Y ′ = AY + bf (3) Y ( t 0 ) = Y 0 where Y 0 = ( y 0 , y 1 , . . . , y N − 1 ) T . Solution to (3) � t e A ( t − t 0 ) Y 0 f ( τ ) e A ( t − τ ) bd τ Y ( t ) = + � �� � t 0 zero-input response � �� � zero-state response ∞ matrix exponential e At � 2 ( At ) 2 + . . . � ( At ) n = I + At + 1 n ! n = 0 19/31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend