efgicient linear computation of the characteristic
play

Efgicient linear computation of the characteristic polynomials of the - PowerPoint PPT Presentation

. . . . . . . . . . . . Introduction . Mathematical theory Algorithm Efgicient linear computation of the characteristic polynomials of the p -curvatures of a difgerential operator with integer coefgicients. Seminar LFANT Raphal


  1. A then . Mathematical theory . . . . . . . . . Introduction Motivating the p -curvature Algorithm . k is a finite field of characteristic p . Lemma When the connexion on M is of the form A I n A k A k AA k A p Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures M = k ( z ) n can be equipped with the connexion ∂ A : Y �→ Y ′ − AY . ∂ ( f ( z ) · m ) = f ( z ) ∂ · m + f ′ ( z ) · m For all difgerential k ( x ) -module M, m �→ ∂ · m is k ( x p ) -linear. m �→ ∂ p · m is k ( x ) -linear.

  2. . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Motivating the p -curvature k is a finite field of characteristic p . Lemma A p Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures M = k ( z ) n can be equipped with the connexion ∂ A : Y �→ Y ′ − AY . ∂ ( f ( z ) · m ) = f ( z ) ∂ · m + f ′ ( z ) · m For all difgerential k ( x ) -module M, m �→ ∂ · m is k ( x p ) -linear. m �→ ∂ p · m is k ( x ) -linear. When the connexion on M is of the form ∂ A then A k +1 = A ′ A 0 = I n k − AA k

  3. . z z z z z z z z z z z z z z and A p z z z z z A z Raphaël Pagès z z z x z x A p z z z z z z z z z z z Motivating the p -curvature . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . Algorithm Mathematical theory Introduction . . . . . . . . . . . . . . . . For ( z + 1) 2 y (3) − zy ′ + ( z 3 + 3) y = 0 and p = 3 .

  4. . z z z z z z z z z z z z z z z and A p z . z z Algorithm A p Raphaël Pagès z z z x z x z z z z z z z z z z Motivating the p -curvature Efgicient computation of p -curvatures Mathematical theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . For ( z + 1) 2 y (3) − zy ′ + ( z 3 + 3) y = 0 and p = 3 .   − z 3 +3 0 0 ( z +1) 2 A = 1 0 −   ( z +1) 2   0 1 0

  5. . Algorithm . . . . . . . . . Introduction Mathematical theory Motivating the p -curvature . . z z z A p x z x z z z Raphaël Pagès . Efgicient computation of p -curvatures . . . . . . . . . . . . . . . . . . . . . . . . . . . For ( z + 1) 2 y (3) − zy ′ + ( z 3 + 3) y = 0 and p = 3 . 2 z 3     − z 3 +3 0 0 0 ( z +1) 2 ( z +1) 2 ( z +1) 2 2 z 3 2 z 4 +2 z 3 +2 z +1 A =  and A p = 1 0 −     ( z +1) 2 z 3 +1 z 3 +1 ( z +1) 2    2 z 4 z 4 + z 3 + z 2 +2 z +2 2 z 4 +2 z 3 + z +2 0 1 0 z 4 + z 3 + z +1 z 4 + z 3 + z +1 z 3 +1

  6. . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Motivating the p -curvature . z z z Raphaël Pagès . Efgicient computation of p -curvatures . . . . . . . . . . . . . . . . . . . . . . . . For ( z + 1) 2 y (3) − zy ′ + ( z 3 + 3) y = 0 and p = 3 . 2 z 3     − z 3 +3 0 0 0 ( z +1) 2 ( z +1) 2 ( z +1) 2 2 z 3 2 z 4 +2 z 3 +2 z +1 A =  and A p = 1 0 −     ( z +1) 2 z 3 +1 z 3 +1 ( z +1) 2    2 z 4 z 4 + z 3 + z 2 +2 z +2 2 z 4 +2 z 3 + z +2 0 1 0 z 4 + z 3 + z +1 z 4 + z 3 + z +1 z 3 +1 z 3 + 1 x + z 6 + 2 z 3 2 χ ( A p ) = x 3 + z 3 + 1

  7. . Algorithm . . . . . . . . . Introduction Mathematical theory Difgerential operators algebra . Definition as sets Example x x x x x x x Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures Let A = k [ x ] or k ( x ) with k a field. We define A� ∂ � .

  8. . Mathematical theory . . . . . . . . . . Introduction Algorithm . Difgerential operators algebra Definition Example x x x x x x x Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures Let A = k [ x ] or k ( x ) with k a field. We define A� ∂ � . A� ∂ � ≃ A [ ∂ ] as sets

  9. . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Difgerential operators algebra Definition Example x x Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures Let A = k [ x ] or k ( x ) with k a field. We define A� ∂ � . A� ∂ � ≃ A [ ∂ ] as sets A = Q [ x ] ( x 2 + 2 x + 1) ∂ 3 − x ∂ + ( x 3 + 3)

  10. . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Difgerential operators algebra Definition Example Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures Let A = k [ x ] or k ( x ) with k a field. We define A� ∂ � . A� ∂ � ≃ A [ ∂ ] as sets A = Q [ x ] ( x 2 + 2 x + 1) ∂ 3 − x ∂ + ( x 3 + 3) ∂ x = x ∂ + 1

  11. A p L : A p L . arithmetic operations. . . . . Introduction Mathematical theory Algorithm summary L is of size O . size : O p . naive computation : O p Best known algorithm : O p arithmetic operations [Bostan, CaRuso, . Schost, 2015]. : size : O . Best known algorithm : O p binary operations [Bostan, CaRuso, Schost, 2014]. Contribution : L x . Computation of all the characteristic polynomials of its p -curvatures for p N in O N binary operations. Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures M = k ( x ) ⟨ ∂ ⟩ / k ( x ) ⟨ ∂ ⟩ L

  12. A p L : A p L . arithmetic operations. . . . . . Introduction Mathematical theory Algorithm summary size : O p . naive computation : O p Schost, 2015]. Best known algorithm : O p arithmetic operations [Bostan, CaRuso, . : size : O . Best known algorithm : O p binary operations [Bostan, CaRuso, Schost, 2014]. Contribution : L x . Computation of all the characteristic polynomials of its p -curvatures for p N in O N binary operations. Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures M = k ( x ) ⟨ ∂ ⟩ / k ( x ) ⟨ ∂ ⟩ L L is of size O (1) .

  13. . arithmetic operations. . . . . . . . Introduction Mathematical theory Algorithm summary naive computation : O p Best known algorithm : O p arithmetic operations [Bostan, CaRuso, . Schost, 2015]. size : O . Best known algorithm : O p binary operations [Bostan, CaRuso, Schost, 2014]. Contribution : L x . Computation of all the characteristic polynomials of its p -curvatures for p N in O N binary operations. Raphaël Pagès . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . . M = k ( x ) ⟨ ∂ ⟩ / k ( x ) ⟨ ∂ ⟩ L L is of size O (1) . A p ( L ) : size : O ( p ) . χ ( A p ( L )) :

  14. . summary . . . . . . . . Introduction Mathematical theory Algorithm Best known algorithm : O p arithmetic operations [Bostan, CaRuso, . Schost, 2015]. size : O . Best known algorithm : O p binary operations [Bostan, CaRuso, Schost, 2014]. Contribution : L x . Computation of all the characteristic polynomials of its p -curvatures for p N in O N binary operations. Raphaël Pagès . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . . M = k ( x ) ⟨ ∂ ⟩ / k ( x ) ⟨ ∂ ⟩ L L is of size O (1) . A p ( L ) : size : O ( p ) . naive computation : ˜ O ( p 2 ) arithmetic operations. χ ( A p ( L )) :

  15. . Algorithm . . . . . . . . . Introduction Mathematical theory summary . Schost, 2015]. size : O . Best known algorithm : O p binary operations [Bostan, CaRuso, Schost, 2014]. Contribution : L x . Computation of all the characteristic polynomials of its p -curvatures for p N in O N binary operations. Raphaël Pagès . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . . M = k ( x ) ⟨ ∂ ⟩ / k ( x ) ⟨ ∂ ⟩ L L is of size O (1) . A p ( L ) : size : O ( p ) . naive computation : ˜ O ( p 2 ) arithmetic operations. Best known algorithm : ˜ O ( p ) arithmetic operations [Bostan, CaRuso, χ ( A p ( L )) :

  16. . Mathematical theory . . . . . . . . . . Introduction Algorithm . summary Schost, 2015]. Best known algorithm : O p binary operations [Bostan, CaRuso, Schost, 2014]. Contribution : L x . Computation of all the characteristic polynomials of its p -curvatures for p N in O N binary operations. Raphaël Pagès . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . . M = k ( x ) ⟨ ∂ ⟩ / k ( x ) ⟨ ∂ ⟩ L L is of size O (1) . A p ( L ) : size : O ( p ) . naive computation : ˜ O ( p 2 ) arithmetic operations. Best known algorithm : ˜ O ( p ) arithmetic operations [Bostan, CaRuso, χ ( A p ( L )) : size : O (1) .

  17. . . . . . . . . . . . . Introduction . Mathematical theory Algorithm summary Schost, 2015]. Schost, 2014]. Contribution : L x . Computation of all the characteristic polynomials of its p -curvatures for p N in O N binary operations. Raphaël Pagès . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . M = k ( x ) ⟨ ∂ ⟩ / k ( x ) ⟨ ∂ ⟩ L L is of size O (1) . A p ( L ) : size : O ( p ) . naive computation : ˜ O ( p 2 ) arithmetic operations. Best known algorithm : ˜ O ( p ) arithmetic operations [Bostan, CaRuso, χ ( A p ( L )) : size : O (1) . O ( √ p ) binary operations [Bostan, CaRuso, Best known algorithm : ˜

  18. . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm summary Schost, 2015]. Schost, 2014]. Raphaël Pagès . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . M = k ( x ) ⟨ ∂ ⟩ / k ( x ) ⟨ ∂ ⟩ L L is of size O (1) . A p ( L ) : size : O ( p ) . naive computation : ˜ O ( p 2 ) arithmetic operations. Best known algorithm : ˜ O ( p ) arithmetic operations [Bostan, CaRuso, χ ( A p ( L )) : size : O (1) . O ( √ p ) binary operations [Bostan, CaRuso, Best known algorithm : ˜ Contribution : L ∈ Z ( x ) � ∂ � . Computation of all the characteristic polynomials of its p -curvatures for p ⩽ N in ˜ O ( N ) binary operations.

  19. mod p s for all p . Algorithm . . . . . . . . . Introduction Mathematical theory Summary . naive computation : O p binary operations. Best known algorithm : O p binary operations [ChudnovsKy, ChudnovsKy, 1988]. size : O s log p . Best known algorithm : O s p binary operations [StRassen, 1977] . Computation of p N : O sN binary operations [Costa, GeRbicz, HaRvey, 2014]. Raphaël Pagès . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . . ( p − 1)! : size : ˜ O ( p ) . ( p − 1)! mod p s :

  20. mod p s for all p . Introduction . . . . . . . . . . Algorithm Mathematical theory . Summary Best known algorithm : O p binary operations [ChudnovsKy, ChudnovsKy, 1988]. size : O s log p . Best known algorithm : O s p binary operations [StRassen, 1977] . Computation of p N : O sN binary operations [Costa, GeRbicz, HaRvey, 2014]. Raphaël Pagès . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . . ( p − 1)! : size : ˜ O ( p ) . naive computation : ˜ O ( p 2 ) binary operations. ( p − 1)! mod p s :

  21. mod p s for all p . Introduction . . . . . . . . . . Mathematical theory . Algorithm Summary ChudnovsKy, 1988]. size : O s log p . Best known algorithm : O s p binary operations [StRassen, 1977] . Computation of p N : O sN binary operations [Costa, GeRbicz, HaRvey, 2014]. Raphaël Pagès . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . . ( p − 1)! : size : ˜ O ( p ) . naive computation : ˜ O ( p 2 ) binary operations. Best known algorithm : ˜ O ( p ) binary operations [ChudnovsKy, ( p − 1)! mod p s :

  22. mod p s for all p . . . . . . . . . . . . Introduction . Mathematical theory Algorithm Summary ChudnovsKy, 1988]. Best known algorithm : O s p binary operations [StRassen, 1977] . Computation of p N : O sN binary operations [Costa, GeRbicz, HaRvey, 2014]. Raphaël Pagès . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . ( p − 1)! : size : ˜ O ( p ) . naive computation : ˜ O ( p 2 ) binary operations. Best known algorithm : ˜ O ( p ) binary operations [ChudnovsKy, ( p − 1)! mod p s : size : O ( s log ( p )) .

  23. mod p s for all p . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Summary ChudnovsKy, 1988]. Computation of p N : O sN binary operations [Costa, GeRbicz, HaRvey, 2014]. Raphaël Pagès . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . ( p − 1)! : size : ˜ O ( p ) . naive computation : ˜ O ( p 2 ) binary operations. Best known algorithm : ˜ O ( p ) binary operations [ChudnovsKy, ( p − 1)! mod p s : size : O ( s log ( p )) . O ( s √ p ) binary operations [StRassen, 1977] . Best known algorithm : ˜

  24. . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Summary ChudnovsKy, 1988]. operations [Costa, GeRbicz, HaRvey, 2014]. Raphaël Pagès . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . ( p − 1)! : size : ˜ O ( p ) . naive computation : ˜ O ( p 2 ) binary operations. Best known algorithm : ˜ O ( p ) binary operations [ChudnovsKy, ( p − 1)! mod p s : size : O ( s log ( p )) . O ( s √ p ) binary operations [StRassen, 1977] . Best known algorithm : ˜ Computation of ( p − 1)! mod p s for all p ⩽ N : ˜ O ( sN ) binary

  25. i f i x x f x Solution : Problem : How to rewrite x ? . Idea : rewrite as elements of k x x x i x x Algorithm Mathematical theory Introduction . p . . k x Raphaël Pagès k k k k k x k x i k x k k x i i f i f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures k ( θ ) � ∂ ± 1 � et k ( x ) � ∂ ± 1 � θ = x ∂

  26. i f i x . i . . . Introduction Mathematical theory Algorithm Idea : rewrite as elements of k . Problem : How to rewrite x ? Solution : f x p i i f . f i i k x k k x k x k x k x k k k k Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . k ( θ ) � ∂ ± 1 � et k ( x ) � ∂ ± 1 � θ = x ∂ ∂ ( x ∂ ) = ( x ∂ + 1) ∂ x ( x ∂ ) = ( x ∂ − 1) x

  27. i f i x . i . . . . Introduction Mathematical theory Algorithm Problem : How to rewrite x ? Solution : f x p i i f . f i i k x k k x k x k x k x k k k k Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . k ( θ ) � ∂ ± 1 � et k ( x ) � ∂ ± 1 � θ = x ∂ ∂ ( x ∂ ) = ( x ∂ + 1) ∂ x ( x ∂ ) = ( x ∂ − 1) x Idea : rewrite as elements of k [ θ ] � ∂ � .

  28. i f i x . i . . . . Introduction Mathematical theory Algorithm Problem : How to rewrite x ? Solution : f x p i i f . f i i k x k k x k x k x k x k k k k Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . k ( θ ) � ∂ ± 1 � et k ( x ) � ∂ ± 1 � θ = x ∂ ∂ ( x ∂ ) = ( x ∂ + 1) ∂ x ( x ∂ ) = ( x ∂ − 1) x Idea : rewrite as elements of k [ θ ] � ∂ � .

  29. i f i x . i . . . . . Introduction Mathematical theory Algorithm Problem : How to rewrite x ? f x p i i f . f i i k x k k x k x k x k x k k k k Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . k ( θ ) � ∂ ± 1 � et k ( x ) � ∂ ± 1 � θ = x ∂ ∂ ( x ∂ ) = ( x ∂ + 1) ∂ x ( x ∂ ) = ( x ∂ − 1) x Idea : rewrite as elements of k [ θ ] � ∂ � . Solution : ∂ − 1

  30. . f . . . . . . . Introduction Mathematical theory Algorithm Problem : How to rewrite x ? i f i . i k x k k x k x k x k x k k k k Raphaël Pagès . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . k ( θ ) � ∂ ± 1 � et k ( x ) � ∂ ± 1 � θ = x ∂ ∂ ( x ∂ ) = ( x ∂ + 1) ∂ x ( x ∂ ) = ( x ∂ − 1) x Idea : rewrite as elements of k [ θ ] � ∂ � . Solution : ∂ − 1 f ( x ) = ∑ p − 1 i =0 ( − 1) i f ( i ) ( x ) ∂ − i − 1

  31. . Algorithm . . . . . . . . . Introduction Mathematical theory Problem : How to rewrite x ? . k x k k x k x k x k x k k k k Raphaël Pagès . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . . k ( θ ) � ∂ ± 1 � et k ( x ) � ∂ ± 1 � θ = x ∂ ∂ ( x ∂ ) = ( x ∂ + 1) ∂ x ( x ∂ ) = ( x ∂ − 1) x Idea : rewrite as elements of k [ θ ] � ∂ � . Solution : ∂ − 1 f ( x ) = ∑ p − 1 i =0 ( − 1) i f ( i ) ( x ) ∂ − i − 1 ∂ i f ( θ ) = f ( θ + i ) ∂ i

  32. . Introduction . . . . . . . . . . Mathematical theory . Algorithm Problem : How to rewrite x ? k x k x k x k x k k k k Raphaël Pagès . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . . k ( θ ) � ∂ ± 1 � et k ( x ) � ∂ ± 1 � θ = x ∂ ∂ ( x ∂ ) = ( x ∂ + 1) ∂ x ( x ∂ ) = ( x ∂ − 1) x Idea : rewrite as elements of k [ θ ] � ∂ � . Solution : ∂ − 1 f ( x ) = ∑ p − 1 i =0 ( − 1) i f ( i ) ( x ) ∂ − i − 1 ∂ i f ( θ ) = f ( θ + i ) ∂ i k ( x ) � ∂ ± 1 � k ( θ ) � ∂ ± 1 �

  33. . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Problem : How to rewrite x ? k k k k Raphaël Pagès . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . k ( θ ) � ∂ ± 1 � et k ( x ) � ∂ ± 1 � θ = x ∂ ∂ ( x ∂ ) = ( x ∂ + 1) ∂ x ( x ∂ ) = ( x ∂ − 1) x Idea : rewrite as elements of k [ θ ] � ∂ � . Solution : ∂ − 1 f ( x ) = ∑ p − 1 i =0 ( − 1) i f ( i ) ( x ) ∂ − i − 1 ∂ i f ( θ ) = f ( θ + i ) ∂ i k ( x ) � ∂ ± 1 � k ( θ ) � ∂ ± 1 � k [ x ] � ∂ ± 1 � k [ x ] � ∂ � k ( x ) � ∂ ± 1 � k ( x ) � ∂ �

  34. . . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Problem : How to rewrite x ? Raphaël Pagès . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . k ( θ ) � ∂ ± 1 � et k ( x ) � ∂ ± 1 � θ = x ∂ ∂ ( x ∂ ) = ( x ∂ + 1) ∂ x ( x ∂ ) = ( x ∂ − 1) x Idea : rewrite as elements of k [ θ ] � ∂ � . Solution : ∂ − 1 f ( x ) = ∑ p − 1 i =0 ( − 1) i f ( i ) ( x ) ∂ − i − 1 ∂ i f ( θ ) = f ( θ + i ) ∂ i k ( x ) � ∂ ± 1 � k ( θ ) � ∂ ± 1 � k [ x ] � ∂ ± 1 � k [ θ ] � ∂ ± 1 � k [ x ] � ∂ � k [ θ ] � ∂ � k ( x ) � ∂ ± 1 � k ( θ ) � ∂ ± 1 � k ( x ) � ∂ � k ( θ ) � ∂ �

  35. . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm x Example x invertible in k x non invertible in k Raphaël Pagès . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . k ( θ ) � ∂ ± 1 � et k ( x ) � ∂ ± 1 � ∼ k [ x ] � ∂ ± 1 � k [ θ ] � ∂ ± 1 � − → θ∂ − 1 �→ ← � x ∂ θ ∂ ↔ ∂

  36. . . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm x Example Raphaël Pagès . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . k ( θ ) � ∂ ± 1 � et k ( x ) � ∂ ± 1 � ∼ k [ x ] � ∂ ± 1 � k [ θ ] � ∂ ± 1 � − → θ∂ − 1 �→ ← � x ∂ θ ∂ ↔ ∂ ( x + 1) ∂ invertible in k ( x ) � ∂ ± 1 � ∂ + θ non invertible in k ( θ ) � ∂ ± 1 �

  37. B p L l m x l m x p A p L B p L B L B L p Mat l m l m . p . . ... l m l l m l B L . Let L L Raphaël Pagès p i l m i p p . L x x . l x l m B L Algorithm Mathematical theory . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures Ξ x ,∂ and Ξ θ,∂ Let L ′ = l m ′ ( θ ) ∂ m + . . . + l 1 ′ ( θ ) ∂ + l 0 ′ ( θ ) .

  38. B p L l m x l m x p A p L B p L p B L B L B L p Mat . . . . ... . Algorithm Mathematical theory Let L l m . x l x . x L p L p i l m i p Raphaël Pagès Introduction Efgicient computation of p -curvatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ξ x ,∂ and Ξ θ,∂ Let L ′ = l m ′ ( θ ) ∂ m + . . . + l 1 ′ ( θ ) ∂ + l 0 ′ ( θ ) . ′   − l 0 l m ′ ′ 1 − l 1   l m ′ B ( L ′ ) =         ′ − l m − 1 1 l m ′

  39. l m x l m x p A p L B p L ... Let L . . . . m Algorithm Mathematical theory Introduction . . . . x l . l x . x L p L p i l m i p Raphaël Pagès . Efgicient computation of p -curvatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ξ x ,∂ and Ξ θ,∂ Let L ′ = l m ′ ( θ ) ∂ m + . . . + l 1 ′ ( θ ) ∂ + l 0 ′ ( θ ) . ′   − l 0 l m ′ ′ 1 − l 1   l m ′ B ( L ′ ) =         ′ − l m − 1 1 l m ′ B p ( L ′ ) = Mat ( ∂ p · ) = B ( L ′ )( θ ) B ( L ′ )( θ + 1) . . . B ( L ′ )( θ + p − 1)

  40. . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm . ... . . . l m Raphaël Pagès . Efgicient computation of p -curvatures . . . . . . . . . . . . . . . . . . . . . . . . Ξ x ,∂ and Ξ θ,∂ Let L ′ = l m ′ ( θ ) ∂ m + . . . + l 1 ′ ( θ ) ∂ + l 0 ′ ( θ ) . ′   − l 0 l m ′ ′ 1 − l 1   l m ′ B ( L ′ ) =         ′ − l m − 1 1 l m ′ B p ( L ′ ) = Mat ( ∂ p · ) = B ( L ′ )( θ ) B ( L ′ )( θ + 1) . . . B ( L ′ )( θ + p − 1) Let L = l m ( x ) ∂ m + . . . + l 1 ( x ) ∂ + l 0 ( x ) . Ξ x ,∂ ( L ) = l m ( x ) p χ ( A p ( L ))( ∂ p ) ( p − 1 ) Ξ θ,∂ ( L ′ ) = ∏ ′ ( θ + i ) χ ( B p ( L ′ ))( ∂ p ) i =0

  41. . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Lemma Send an irreducible element over a power of an irreductible element of the center Multiplicative. Raphaël Pagès . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . Ξ x ,∂ and Ξ θ,∂ Ξ x ,∂ Ξ θ,∂ k [ θ p − θ ][ ∂ p ] k [ x ] � ∂ � k [ x p ][ ∂ p ] k [ θ ] � ∂ � Ξ x ,∂ Ξ θ,∂ k ( θ p − θ )[ ∂ p ] k ( x ) � ∂ � k ( x p )[ ∂ p ] k ( θ ) � ∂ �

  42. . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Lemma Send an irreducible element over a power of an irreductible element of the center Multiplicative. Raphaël Pagès . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . Ξ x ,∂ and Ξ θ,∂ Ξ x ,∂ Ξ θ,∂ k [ θ p − θ ][ ∂ p ] k [ x ] � ∂ � k [ x p ][ ∂ p ] k [ θ ] � ∂ � Ξ x ,∂ Ξ θ,∂ k ( θ p − θ )[ ∂ p ] k ( x ) � ∂ � k ( x p )[ ∂ p ] k ( θ ) � ∂ �

  43. . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Lemma Send an irreducible element over a power of an irreductible element of the center Multiplicative. Raphaël Pagès . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . Ξ x ,∂ and Ξ θ,∂ Ξ x ,∂ Ξ θ,∂ k [ θ p − θ ][ ∂ p ] k [ x ] � ∂ � k [ x p ][ ∂ p ] k [ θ ] � ∂ � Ξ x ,∂ Ξ θ,∂ k ( θ p − θ )[ ∂ p ] k ( x ) � ∂ � k ( x p )[ ∂ p ] k ( θ ) � ∂ �

  44. . . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Theorem The followin diagram commutes. Raphaël Pagès . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . Ξ x ,∂ and Ξ θ,∂ ∼ k [ x ] � ∂ ± 1 � k [ θ ] � ∂ ± 1 � Ξ x ,∂ Ξ θ,∂ k [ θ p − θ ][ ∂ ± p ] ∼ k [ x p ][ ∂ ± p ]

  45. . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm x x x x x x Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures Ξ x ,∂ and Ξ θ,∂ ( x 2 + 2 x + 1) ∂ 3 − x ∂ + x 3 + 3

  46. . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm x x x x x x Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . Ξ x ,∂ and Ξ θ,∂ ( x 2 + 2 x + 1) ∂ 3 − x ∂ + x 3 + 3 ( ∂ 6 +2 θ∂ 5 +( θ 2 − θ ) ∂ 4 ) ∂ − 3 �→ − ( θ +3) ∂ 3 +( θ 3 − 3 θ 2 +2 θ )

  47. . . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm x Raphaël Pagès . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . Ξ x ,∂ and Ξ θ,∂ ( x 2 + 2 x + 1) ∂ 3 − x ∂ + x 3 + 3 ( ∂ 6 +2 θ∂ 5 +( θ 2 − θ ) ∂ 4 ) ∂ − 3 �→ − ( θ +3) ∂ 3 +( θ 3 − 3 θ 2 +2 θ ) x 3 +3  −  x 2 +2 x +1 1   x 2 +2 x +1 1 0

  48. . . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm . x Raphaël Pagès . Efgicient computation of p -curvatures . . . . . . . . . . . . . . . . . . . . . . Ξ x ,∂ and Ξ θ,∂ ( x 2 + 2 x + 1) ∂ 3 − x ∂ + x 3 + 3 ( ∂ 6 +2 θ∂ 5 +( θ 2 − θ ) ∂ 4 ) ∂ − 3 �→ − ( θ +3) ∂ 3 +( θ 3 − 3 θ 2 +2 θ ) − ( θ 3 − 3 θ 2 + 2 θ )   1 0 x 3 +3    −    x 2 +2 x +1 1 0   1     1 ( θ + 3) x 2 +2 x +1   1 0 − ( θ 2 − θ )   1   1 − 2 θ

  49. x ) with the determinant. . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm proof of the commutativity Step 1 : Isomorphism with a matrix algebra afuer scalar extension. Step 2 : The determinant : restriction, corestriction Step 3 : Equility of (resp. Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . M θ M p ( k [ θ p − θ ][ ∂ ± p ][ T ]) ∼ k [ θ ] � ∂ ± 1 � [ T ] ∼ ∼ M x ∼ k [ x ] � ∂ ± 1 � [ T ] M p ( k [ x p ][ ∂ ± p ][ T ])

  50. x ) with the determinant. . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm proof of the commutativity Step 1 : Isomorphism with a matrix algebra afuer scalar extension. Step 2 : The determinant : restriction, corestriction Step 3 : Equility of (resp. Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . M θ M p ( k [ θ p − θ ][ ∂ ± p ][ T ]) ∼ k [ θ ] � ∂ ± 1 � [ T ] ∼ ∼ M x ∼ k [ x ] � ∂ ± 1 � [ T ] M p ( k [ x p ][ ∂ ± p ][ T ])

  51. . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm proof of the commutativity Step 1 : Isomorphism with a matrix algebra afuer scalar extension. Step 2 : The determinant : restriction, corestriction Raphaël Pagès . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . M θ M p ( k [ θ p − θ ][ ∂ ± p ][ T ]) ∼ k [ θ ] � ∂ ± 1 � [ T ] ∼ ∼ M x ∼ k [ x ] � ∂ ± 1 � [ T ] M p ( k [ x p ][ ∂ ± p ][ T ]) Step 3 : Equility of Ξ θ,∂ (resp. Ξ x ,∂ ) with the determinant.

  52. p T p k x p . k x . . . . . . . Introduction Mathematical theory Algorithm Step 1 : Isomorphism with a matrix algebra k x T . k x p T T ... T p and ... p Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures T p − T = θ p − θ or T p − T = x p ∂ p

  53. . Introduction . . . . . . . . . . Mathematical theory . Algorithm Step 1 : Isomorphism with a matrix algebra T T ... T p and ... p Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures T p − T = θ p − θ or T p − T = x p ∂ p k [ x ] � ∂ ± 1 � [ T ] = k [ x ] � ∂ ± 1 � ⊗ k [ x p ][ ∂ ± p ] k [ x p ][ ∂ ± p ][ T ]

  54. . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Step 1 : Isomorphism with a matrix algebra T ... ... Raphaël Pagès . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . T p − T = θ p − θ or T p − T = x p ∂ p k [ x ] � ∂ ± 1 � [ T ] = k [ x ] � ∂ ± 1 � ⊗ k [ x p ][ ∂ ± p ] k [ x p ][ ∂ ± p ][ T ]     1 T + 1     M θ ( θ ) =  and M θ ( ∂ ) =         1    T + p − 1 ∂ p

  55. x T x T x T M p . . . . . . . Introduction Mathematical theory Algorithm Step 2 : The determinant, restriction, corestriction . . T M p T T x x det det Invariance by T T a Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures = k [ · ] � ∂ ± 1 � D · Z · = le centre associé

  56. . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Step 2 : The determinant, restriction, corestriction det det Invariance by T T a Raphaël Pagès . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . N x M x D x [ T ] M p ( Z x [ T ]) Z x [ T ] = k [ · ] � ∂ ± 1 � D · ∼ ∼ ∼ Z · = le centre associé M θ D θ [ T ] M p ( Z θ [ T ]) Z θ [ T ] N θ

  57. . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Step 2 : The determinant, restriction, corestriction det det Invariance by T T a Raphaël Pagès . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . N x M x D x [ T ] M p ( Z x [ T ]) Z x [ T ] = k [ · ] � ∂ ± 1 � D · ∼ ∼ ∼ Z · = le centre associé M θ D θ [ T ] M p ( Z θ [ T ]) Z θ [ T ] N θ N · ( D · ) ⊂ Z ·

  58. . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Step 2 : The determinant, restriction, corestriction det det Raphaël Pagès . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . N x M x D x [ T ] M p ( Z x [ T ]) Z x [ T ] = k [ · ] � ∂ ± 1 � D · ∼ ∼ ∼ Z · = le centre associé M θ D θ [ T ] M p ( Z θ [ T ]) Z θ [ T ] N θ N · ( D · ) ⊂ Z · Invariance by T �→ T + a

  59. p T p T M p k x p p T p T M p k . . . Introduction Mathematical theory L p Step 3 : Equality with the determinant Lemma . is multiplicative. L Algorithm . k x . k x p k p k p x x det det Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures N · ( L ) and Ξ · ,∂ ( L ) have the same leading coefgicient.

  60. p T p T M p k x p p T p T M p k . . . . Introduction L p Algorithm Step 3 : Equality with the determinant . Lemma L Mathematical theory . k x . k x p k p k p x x det det Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures N · ( L ) and Ξ · ,∂ ( L ) have the same leading coefgicient. N · is multiplicative.

  61. p T p T M p k x p p T p T M p k Step 3 : Equality with the determinant Algorithm Mathematical theory . Lemma . . . . . . Introduction k x p k x . k p k p x x det det Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures N · ( L ) and Ξ · ,∂ ( L ) have the same leading coefgicient. N · is multiplicative. N · ( L ∈ Z · ) = L p

  62. p T p T M p k x p p T p T M p k Step 3 : Equality with the determinant Algorithm Mathematical theory . Lemma . . . . . . Introduction k x p k x . k p k p x x det det Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures N · ( L ) and Ξ · ,∂ ( L ) have the same leading coefgicient. N · is multiplicative. N · ( L ∈ Z · ) = L p

  63. . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Step 3 : Equality with the determinant Lemma det det Raphaël Pagès . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . N · ( L ) and Ξ · ,∂ ( L ) have the same leading coefgicient. N · is multiplicative. N · ( L ∈ Z · ) = L p Ξ x ,∂ M x k [ x ] � ∂ ± 1 � M p ( k [ x p ][ ∂ ± p ][ T ]) k [ x p ][ ∂ ± p ][ T ] ∼ ∼ ∼ M θ k [ θ ] � ∂ ± 1 � M p ( k [ θ p ][ ∂ ± p ][ T ]) k [ θ p ][ ∂ ± p ][ T ] Ξ θ,∂

  64. p L for all p p x p x . Step 1 : Compute the B p p p p The algorithm’s skeleton p Algorithm Mathematical theory Introduction . . . p N . . x p n M n p p p B p Step 2 : Compute their characteristic polynomials degree : O p Step 3 : Compute their reciproqual image by p . Size of the output at the end of step 2 : O N Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . L ∈ Z [ x ] � ∂ �

  65. p L for all p p x . N . . . . . Introduction Mathematical theory Algorithm The algorithm’s skeleton p p Step 1 : Compute the B p p x . p n M n p p p B p Step 2 : Compute their characteristic polynomials degree : O p Step 3 : Compute their reciproqual image by p . Size of the output at the end of step 2 : O N Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures ∼ Φ p : F p [ x ] � ∂ ± 1 � → F p [ θ ] � ∂ ± 1 � L ∈ Z [ x ] � ∂ � −

  66. p L for all p p x x . . . . . Introduction Mathematical theory Algorithm The algorithm’s skeleton Step 1 : Compute the B p p N . . . p n M n p p p B p Step 2 : Compute their characteristic polynomials degree : O p Step 3 : Compute their reciproqual image by p . Size of the output at the end of step 2 : O N Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures ∼ Φ p : F p [ x ] � ∂ ± 1 � → F p [ θ ] � ∂ ± 1 � L ∈ Z [ x ] � ∂ � − π p : Z → F p

  67. . . . . . . . . . . . . Introduction . Mathematical theory Algorithm The algorithm’s skeleton B p Step 2 : Compute their characteristic polynomials degree : O p Step 3 : Compute their reciproqual image by p . Size of the output at the end of step 2 : O N Raphaël Pagès . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . ∼ Φ p : F p [ x ] � ∂ ± 1 � → F p [ θ ] � ∂ ± 1 � L ∈ Z [ x ] � ∂ � − π p : Z → F p Step 1 : Compute the B p ◦ Φ p ◦ π p ( L ) for all p ⩽ N . Z [ x ] � ∂ � π p Φ p F p [ θ ] � ∂ ± 1 � F p [ x ] � ∂ � ⨿ n ∈ N M n ( F p ( θ ))

  68. . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm The algorithm’s skeleton B p Step 2 : Compute their characteristic polynomials Step 3 : Compute their reciproqual image by p . Size of the output at the end of step 2 : O N Raphaël Pagès . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . ∼ Φ p : F p [ x ] � ∂ ± 1 � → F p [ θ ] � ∂ ± 1 � L ∈ Z [ x ] � ∂ � − π p : Z → F p Step 1 : Compute the B p ◦ Φ p ◦ π p ( L ) for all p ⩽ N . Z [ x ] � ∂ � π p Φ p F p [ θ ] � ∂ ± 1 � F p [ x ] � ∂ � ⨿ n ∈ N M n ( F p ( θ )) degree : O ( p )

  69. . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm The algorithm’s skeleton B p Step 2 : Compute their characteristic polynomials Size of the output at the end of step 2 : O N Raphaël Pagès . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . ∼ Φ p : F p [ x ] � ∂ ± 1 � → F p [ θ ] � ∂ ± 1 � L ∈ Z [ x ] � ∂ � − π p : Z → F p Step 1 : Compute the B p ◦ Φ p ◦ π p ( L ) for all p ⩽ N . Z [ x ] � ∂ � π p Φ p F p [ θ ] � ∂ ± 1 � F p [ x ] � ∂ � ⨿ n ∈ N M n ( F p ( θ )) degree : O ( p ) Step 3 : Compute their reciproqual image by Φ p .

  70. . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm The algorithm’s skeleton B p Step 2 : Compute their characteristic polynomials Size of the output at the end of step 2 : O N Raphaël Pagès . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . ∼ Φ p : F p [ x ] � ∂ ± 1 � → F p [ θ ] � ∂ ± 1 � L ∈ Z [ x ] � ∂ � − π p : Z → F p Step 1 : Compute the B p ◦ Φ p ◦ π p ( L ) for all p ⩽ N . Z [ x ] � ∂ � π p Φ p F p [ θ ] � ∂ ± 1 � F p [ x ] � ∂ � ⨿ n ∈ N M n ( F p ( θ )) degree : O ( p ) Step 3 : Compute their reciproqual image by Φ p .

  71. . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm The algorithm’s skeleton B p Step 2 : Compute their characteristic polynomials Raphaël Pagès . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . ∼ Φ p : F p [ x ] � ∂ ± 1 � → F p [ θ ] � ∂ ± 1 � L ∈ Z [ x ] � ∂ � − π p : Z → F p Step 1 : Compute the B p ◦ Φ p ◦ π p ( L ) for all p ⩽ N . Z [ x ] � ∂ � π p Φ p F p [ θ ] � ∂ ± 1 � F p [ x ] � ∂ � ⨿ n ∈ N M n ( F p ( θ )) degree : O ( p ) Step 3 : Compute their reciproqual image by Φ p . Size of the output at the end of step 2 : O ( N 2 )

  72. . p p p d P dp . deg P i . k p List of P Coefgicients of L of degree d in x . Algorithm Mathematical theory Introduction . d p . p Raphaël Pagès i p i p i p i Lemma x p p p p p dp p dp P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures Step 3 : computing modulo θ d

  73. . p . . . Introduction Mathematical theory Algorithm Coefgicients of L of degree d in x . deg P i dp . P p d p d p p . P p dp dp p p p x p p Lemma i p p i i p i Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . Step 3 : computing modulo θ d List of P ∈ k [ θ p − θ ] .

  74. . p . . . . Introduction Mathematical theory Algorithm Coefgicients of L of degree d in x . P p d p d p p . P p dp dp p p p x p p Lemma i p p i i p i Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures Step 3 : computing modulo θ d List of P ∈ k [ θ p − θ ] . deg ( P i ) ⩽ dp .

  75. . P . . . . . . . . Introduction Mathematical theory Algorithm Coefgicients of L of degree d in x . p dp . dp p p p x p p Lemma i p p i i p i Raphaël Pagès . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . . Step 3 : computing modulo θ d List of P ∈ k [ θ p − θ ] . deg ( P i ) ⩽ dp . P = p d ( θ p − θ ) d + . . . + p 1 ( θ p − θ ) + p 0

  76. . Introduction . . . . . . . . . . Mathematical theory . Algorithm Coefgicients of L of degree d in x . p x p p Lemma i p p i i p i Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures Step 3 : computing modulo θ d List of P ∈ k [ θ p − θ ] . deg ( P i ) ⩽ dp . P = p d ( θ p − θ ) d + . . . + p 1 ( θ p − θ ) + p 0 dp θ dp + . . . + p ′ P = p ′ 1 θ + p 0

  77. . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Coefgicients of L of degree d in x . Lemma i p p i i p i Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . Step 3 : computing modulo θ d List of P ∈ k [ θ p − θ ] . deg ( P i ) ⩽ dp . P = p d ( θ p − θ ) d + . . . + p 1 ( θ p − θ ) + p 0 dp θ dp + . . . + p ′ P = p ′ 1 θ + p 0 θ p − θ �→ x p ∂ p

  78. . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Coefgicients of L of degree d in x . Lemma i Raphaël Pagès . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . Step 3 : computing modulo θ d List of P ∈ k [ θ p − θ ] . deg ( P i ) ⩽ dp . P = p d ( θ p − θ ) d + . . . + p 1 ( θ p − θ ) + p 0 dp θ dp + . . . + p ′ P = p ′ 1 θ + p 0 θ p − θ �→ x p ∂ p ∀ i ⩽ p − 1 p i = ( − 1) i p ′

  79. . . . . . . . . . . . . Introduction . Mathematical theory Algorithm Structure of the algorithm Step 2 : Compute their characteristic polynomials mod d . O N . Step 3 : Compute their reciproqual image by p . O N Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . ∼ Φ p : F p [ x ] � ∂ ± 1 � → F p [ θ ] � ∂ ± 1 � L ∈ Z [ x ] � ∂ � − π p : Z → F p Step 1 : Compute the B p ◦ Φ p ◦ π p ( L ) mod θ d for all p ⩽ N .

  80. . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Structure of the algorithm Step 2 : Compute their characteristic polynomials Step 3 : Compute their reciproqual image by p . O N Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . ∼ Φ p : F p [ x ] � ∂ ± 1 � → F p [ θ ] � ∂ ± 1 � L ∈ Z [ x ] � ∂ � − π p : Z → F p Step 1 : Compute the B p ◦ Φ p ◦ π p ( L ) mod θ d for all p ⩽ N . mod θ d . ˜ O ( N ) .

  81. . . . . . . . . . . . . . . . . Introduction Mathematical theory Algorithm Structure of the algorithm Step 2 : Compute their characteristic polynomials Raphaël Pagès . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . ∼ Φ p : F p [ x ] � ∂ ± 1 � → F p [ θ ] � ∂ ± 1 � L ∈ Z [ x ] � ∂ � − π p : Z → F p Step 1 : Compute the B p ◦ Φ p ◦ π p ( L ) mod θ d for all p ⩽ N . mod θ d . ˜ O ( N ) . Step 3 : Compute their reciproqual image by Φ p . ˜ O ( N )

  82. . Algorithm . . . . . . . . . Introduction Mathematical theory HaRvey, 2014] . mod s s s mod s s mod s mod s s s mod s s Raphaël Pagès . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . . Computation of ( p − 1)! mod p s [Costa, GeRbicz, N = 7 . (3 − 1)!

  83. . Algorithm . . . . . . . . . Introduction Mathematical theory HaRvey, 2014] . mod s s s mod s s mod s mod s s s mod s s Raphaël Pagès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efgicient computation of p -curvatures Computation of ( p − 1)! mod p s [Costa, GeRbicz, N = 7 . (3 − 1)! (5 − 1)! (7 − 1)!

  84. . Introduction . . . . . . . . . . Mathematical theory . Algorithm HaRvey, 2014] mod s s mod s mod s s s mod s s Raphaël Pagès . . . . . . . . . . . . . . . Efgicient computation of p -curvatures . . . . . . . . . . . . . Computation of ( p − 1)! mod p s [Costa, GeRbicz, N = 7 . (3 − 1)! (5 − 1)! (7 − 1)! mod 3 s 5 s 7 s

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend