introduction to mobile robotics wheeled locomotion
play

Introduction to Mobile Robotics Wheeled Locomotion Wolfram - PowerPoint PPT Presentation

Introduction to Mobile Robotics Wheeled Locomotion Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras 1 Locomotion of Wheeled Robots Locomotion (Oxford Dict.): Power of motion from place to place Differential drive


  1. Introduction to Mobile Robotics Wheeled Locomotion Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras 1

  2. Locomotion of Wheeled Robots Locomotion (Oxford Dict.): Power of motion from place to place § Differential drive (AmigoBot, Pioneer 2-DX) § Car drive (Ackerman steering) § Synchronous drive (B21) § XR4000 § Mecanum wheels roll x y y z motion we also allow wheels to rotate around the z axis 2

  3. Instantaneous Center of Curvature ICC § For rolling motion to occur, each wheel has to move along its y-axis 3

  4. Differential Drive y ICC [ x R sin , y R cos ] = − θ + θ ICC ω v l ! ( R + l / 2) = v r ! ( R ! l / 2) = v l R = l ( v l + v r ) θ R x (x,y) 2 ( v r ! v l ) ! = v r ! v l v r l l /2 v = v r + v l 2 4

  5. Differential Drive: Forward Kinematics ICC x ' cos( t ) sin( t ) 0 x ICC ICC ωδ − ωδ − ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ x x ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ y ' sin( t ) cos( t ) 0 y ICC ICC = ωδ ωδ − + y y ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ' 0 0 1 t ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ θ θ ωδ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ R t x ( t ) v ( t ' ) cos[ ( t ' )] dt ' = θ ∫ P(t+ δ t) 0 t y ( t ) v ( t ' ) sin[ ( t ' )] dt ' = θ ∫ 0 P(t) t ( t ) ( t ' ) dt ' θ = ∫ ω 0 5

  6. Differential Drive: Forward Kinematics ICC x ' cos( t ) sin( t ) 0 x ICC ICC ωδ − ωδ − ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ x x ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ y ' sin( t ) cos( t ) 0 y ICC ICC = ωδ ωδ − + y y ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ' 0 0 1 t ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ θ θ ωδ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ R t 1 x ( t ) [ v ( t ' ) v ( t ' )] cos[ ( t ' )] dt ' P(t+ δ t) = + θ ∫ r l 2 0 t 1 y ( t ) [ v ( t ' ) v ( t ' )] sin[ ( t ' )] dt ' = ∫ + θ r l 2 0 t 1 P(t) ( t ) [ v ( t ' ) v ( t ' )] dt ' θ = ∫ − r l l 0 6

  7. Ackermann Drive ICC [ x R sin , y R cos ] = − θ + θ d R = y tan ϕ ω ϕ ϕ ( R l / 2 ) v ω + = ICC v r l ( R l / 2 ) v ω − = l l ( v v ) + l r R = θ R d 2 ( v v ) x − (x,y) r l v v − r l ω = v r l l /2 7

  8. Synchronous Drive y t x ( t ) v ( t ' ) cos[ ( t ' )] dt ' = θ ∫ 0 t y ( t ) v ( t ' ) sin[ ( t ' )] dt ' = θ ∫ v(t) θ 0 t x ( t ) ( t ' ) dt ' θ = ∫ ω ω ( ) t 0 8

  9. t XR4000 Drive x ( t ) v ( t ' ) cos[ ( t ' )] dt ' = ∫ θ 0 y t y ( t ) v ( t ' ) sin[ ( t ' )] dt ' = ∫ θ 0 t ( t ) ( t ' ) dt ' θ = ∫ ω v i (t) 0 θ x ω i (t) ICC 9

  10. XR4000 [courtesy by Oliver Brock & Oussama Khatib] 10

  11. Mecanum Wheels v ( v v v v ) / 4 = + + + y 0 1 2 3 v ( v v v v ) / 4 = − + − x 0 1 2 3 v ( v v v v ) / 4 = + − − 0 1 2 3 θ v ( v v v v ) / 4 = − − + error 0 1 2 3 11

  12. Example: Priamos (Karlsruhe) 12

  13. Example 13

  14. Example: KUKA youBot 14

  15. Example: Segway Omni 15

  16. Tracked Vehicles 16

  17. Other Robots: OmniTread [courtesy by Johann Borenstein] 17

  18. Other Robots: Humanoids 18

  19. Non-Holonomic Constraints § Non-holonomic constraints limit the possible incremental movements within the configuration space of the robot. § Robots with differential drive or synchro- drive move on a circular trajectory and cannot move sideways. § XR-4000 or Mecanum-wheeled robots can move sideways (they have no non- holonomic constraints). 19

  20. Holonomic vs. Non-Holonomic § Non-holonomic constraints reduce the control space with respect to the current configuration § E.g., moving sideways is impossible. § Holonomic constraints reduce the configuration space. § E.g., a car and a trailer (not all angles between car and trailer are possible) 20

  21. Drives with Non-Holonomic Constraints § Synchro-drive § Differential drive § Ackermann drive 21

  22. Drives without Non-Holonomic Constraints § XR4000 drive § Mecanum wheels 22

  23. Dead Reckoning and Odometry § Estimating the motion based on the issued controls/wheel encoder readings § Integrated over time 23

  24. Summary § Introduced different types of drives for wheeled robots § Math to describe the motion of the basic drives given the speed of the wheels § Non-holonomic Constraints § Odometry and dead reckoning 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend