efficient estimation for ergodic diffusions sampled at
play

Efficient estimation for ergodic diffusions sampled at high - PowerPoint PPT Presentation

Efficient estimation for ergodic diffusions sampled at high frequency Michael Srensen Department of Mathematical Sciences University of Copenhagen, Denmark http://www.math.ku.dk/ michael . p.1/42 Discretely observed diffusion R p dX


  1. Efficient estimation for ergodic diffusions sampled at high frequency Michael Sørensen Department of Mathematical Sciences University of Copenhagen, Denmark http://www.math.ku.dk/ ∼ michael . – p.1/42

  2. Discretely observed diffusion R p dX t = b ( X t ; θ ) dt + σ ( X t ; θ ) dW t θ ∈ Θ ⊆ I Data: X t 1 , · · · , X t n , t 1 < · · · < t n . . – p.2/42

  3. Discretely observed diffusion R p dX t = b ( X t ; θ ) dt + σ ( X t ; θ ) dW t θ ∈ Θ ⊆ I Data: X t 1 , · · · , X t n , t 1 < · · · < t n . Review papers: Helle Sørensen (2004) Int. Stat. Rev. Bibby, Jacobsen and Sørensen (2004) Sørensen (2007) . – p.2/42

  4. Likelihood inference R p dX t = b ( X t ; θ ) dt + σ ( X t ; θ ) dW t θ ∈ Θ ⊆ I Data: X t 1 , · · · , X t n , t 1 < · · · < t n . Likelihood-function: n � L n ( θ ) = p (∆ i , X t i − 1 , X t i ; θ ) , i =1 where t 0 = 0 and ∆ i = t i − t i − 1 . y �→ p (∆ , x, y ; θ ) is the probability density function of the conditional distribution of X t +∆ given that X t = x . . – p.3/42

  5. Likelihood inference R p dX t = b ( X t ; θ ) dt + σ ( X t ; θ ) dW t θ ∈ Θ ⊆ I Data: X t 1 , · · · , X t n , t 1 < · · · < t n . Likelihood-function: n � L n ( θ ) = p (∆ i , X t i − 1 , X t i ; θ ) , i =1 where t 0 = 0 and ∆ i = t i − t i − 1 . y �→ p (∆ , x, y ; θ ) is the probability density function of the conditional distribution of X t +∆ given that X t = x . Score function: n � U n ( θ ) = ∂ θ log L n ( θ ) = ∂ θ log p (∆ i , X t i − 1 , X t i ; θ ) . i =1 Under weak regularity conditions, the score function is a P θ -martingale . – p.3/42

  6. Quadratic estimating functions Approximate likelihood function n . � L n ( θ ) = M n ( θ ) = q (∆ i , X t i − 1 , X t i ; θ ) i =1 � ( y − F (∆ , x ; θ )) 2 � 1 . p (∆ , x, y ; θ ) = q (∆ , x, y ; θ ) = exp � 2Φ(∆ , x ; θ ) 2 π Φ(∆ , x ; θ ) F ( x ; θ ) = E θ ( X ∆ | X 0 = x ) Φ( x ; θ ) = Var θ ( X ∆ | X 0 = x ) and . – p.4/42

  7. Quadratic estimating functions Approximate likelihood function n . � L n ( θ ) = M n ( θ ) = q (∆ i , X t i − 1 , X t i ; θ ) i =1 � ( y − F (∆ , x ; θ )) 2 � 1 . p (∆ , x, y ; θ ) = q (∆ , x, y ; θ ) = exp � 2Φ(∆ , x ; θ ) 2 π Φ(∆ , x ; θ ) F ( x ; θ ) = E θ ( X ∆ | X 0 = x ) Φ( x ; θ ) = Var θ ( X ∆ | X 0 = x ) and Approximate score function n � ∂ θ F (∆ i , X t i − 1 ; θ ) � ∂ θ log M n ( θ ) = Φ(∆ i , X t i − 1 ; θ ) [ X t i − F (∆ i , X t i − 1 ; θ )] i =1 + ∂ θ Φ(∆ i , X t i − 1 ; θ ) � 2Φ(∆ i , X t i − 1 ; θ ) 2 [( X t i − F (∆ i , X t i − 1 ; θ )) 2 − Φ(∆ i , X t i − 1 ; θ )] . – p.4/42

  8. Martingale estimating functions n � G n ( θ ) = g (∆ i , X t i , X t i − 1 ; θ ) , i =1 N � a j ( x, ∆; θ )[ f j ( y ; θ ) − π ∆ g (∆ , y, x ; θ ) = θ f j ( x ; θ )] j =1 ↑ ↑ p-dimensional real valued π ∆ Transition operator: θ f ( x ; θ ) = E θ ( f ( X ∆ ; θ ) | X 0 = x ) . – p.5/42

  9. Martingale estimating functions n � G n ( θ ) = g (∆ i , X t i , X t i − 1 ; θ ) , i =1 N � a j ( x, ∆; θ )[ f j ( y ; θ ) − π ∆ g (∆ , y, x ; θ ) = θ f j ( x ; θ )] j =1 ↑ ↑ p-dimensional real valued G n ( θ ) is a P θ -martingale: E θ ( a j ( X t i − 1 , ∆ i ; θ )[ f j ( X t i ; θ ) − π ∆ i θ f j ( X t i − 1 ; θ )] | X t 1 , · · · , X t i − 1 ) = 0 . – p.6/42

  10. Martingale estimating functions n � G n ( θ ) = g (∆ i , X t i , X t i − 1 ; θ ) , i =1 N � a j ( x, ∆; θ )[ f j ( y ; θ ) − π ∆ g (∆ , y, x ; θ ) = θ f j ( x ; θ )] j =1 ↑ ↑ p-dimensional real valued G n ( θ ) is a P θ -martingale: E θ ( a j ( X t i − 1 , ∆ i ; θ )[ f j ( X t i ; θ ) − π ∆ i θ f j ( X t i − 1 ; θ )] | X t 1 , · · · , X t i − 1 ) = 0 G n (ˆ G n –estimator(s): θ n ) = 0 Bibby and Sørensen (1995,1996) . – p.6/42

  11. Martingale estimating functions n � G n ( θ ) = g (∆ i , X t i , X t i − 1 ; θ ) , i =1 N � a j ( x, ∆; θ )[ f j ( y ; θ ) − π ∆ g (∆ , y, x ; θ ) = θ f j ( x ; θ )] j =1 • Easy asymptotics by martingale limit theory . – p.7/42

  12. Martingale estimating functions n � G n ( θ ) = g (∆ i , X t i , X t i − 1 ; θ ) , i =1 N � a j ( x, ∆; θ )[ f j ( y ; θ ) − π ∆ g (∆ , y, x ; θ ) = θ f j ( x ; θ )] j =1 • Easy asymptotics by martingale limit theory • Simple expression for Godambe-Heyde optimal estimating function . – p.7/42

  13. Martingale estimating functions n � G n ( θ ) = g (∆ i , X t i , X t i − 1 ; θ ) , i =1 N � a j ( x, ∆; θ )[ f j ( y ; θ ) − π ∆ g (∆ , y, x ; θ ) = θ f j ( x ; θ )] j =1 • Easy asymptotics by martingale limit theory • Simple expression for Godambe-Heyde optimal estimating function • Approximates the score function, which is a P θ -martingale . – p.7/42

  14. Martingale estimating functions n � G n ( θ ) = g (∆ i , X t i , X t i − 1 ; θ ) , i =1 N � a j ( x, ∆; θ )[ f j ( y ; θ ) − π ∆ g (∆ , y, x ; θ ) = θ f j ( x ; θ )] j =1 • Easy asymptotics by martingale limit theory • Simple expression for Godambe-Heyde optimal estimating function • Approximates the score function, which is a P θ -martingale • Particular and most efficient instance of GMM . – p.7/42

  15. Asymptotics - ergodic diffusions v ( x ; θ ) = σ 2 ( x ; θ ) dX t = b ( X t ; θ ) dt + σ ( X t ; θ ) dW t . – p.8/42

  16. Asymptotics - ergodic diffusions v ( x ; θ ) = σ 2 ( x ; θ ) dX t = b ( X t ; θ ) dt + σ ( X t ; θ ) dW t Assume that � r � x # � r x # s ( x ; θ ) dx = s ( x ; θ ) dx = ∞ and µ θ ( x ) dx = A ( θ ) < ∞ , ˜ ℓ ℓ where x # is an arbitrary point in ( ℓ, r ) � x � b ( y ; θ ) � µ θ ( x ) = [ s ( x ; θ ) v ( x ; θ )] − 1 s ( x ; θ ) = exp − 2 v ( y ; θ ) dy and ˜ x # . – p.8/42

  17. Asymptotics - ergodic diffusions v ( x ; θ ) = σ 2 ( x ; θ ) dX t = b ( X t ; θ ) dt + σ ( X t ; θ ) dW t Assume that � r � x # � r x # s ( x ; θ ) dx = s ( x ; θ ) dx = ∞ and µ θ ( x ) dx = A ( θ ) < ∞ , ˜ ℓ ℓ where x # is an arbitrary point in ( ℓ, r ) � x � b ( y ; θ ) � µ θ ( x ) = [ s ( x ; θ ) v ( x ; θ )] − 1 s ( x ; θ ) = exp − 2 v ( y ; θ ) dy and ˜ x # X is ergodic with invariant measure µ θ ( x ) = ˜ µ θ ( x ) /A ( θ ) Q ∆ θ ( x, y ) = µ θ ( x ) p (∆ , x, y ; θ ) . – p.8/42

  18. Asymptotics - low frequency t i = ∆ i Assume that and the identifiability condition that Q ∆ θ 0 ( g (∆ , θ )) = 0 θ = θ 0 if and only if and weak regularity conditions. . – p.9/42

  19. Asymptotics - low frequency t i = ∆ i Assume that and the identifiability condition that Q ∆ θ 0 ( g (∆ , θ )) = 0 θ = θ 0 if and only if and weak regularity conditions. Then a consistent estimator ˆ θ n that solves the estimating equation G n ( θ ) = 0 exists and is unique in any compact subset of Θ containing θ 0 with a probability that goes to one as n → ∞ . Moreover, √ n (ˆ D 0 , S − 1 θ 0 V θ 0 ( S T θ 0 ) − 1 � � θ n − θ 0 ) − → N under P θ 0 , where V θ = Q ∆ g (∆ , θ ) g (∆ , θ ) T � Q ∆ � � � �� S θ = ∂ θ j g i (∆; θ ) and θ 0 θ 0 . – p.9/42

  20. GMM estimator ˜ θ n is found by minimizing n n � � � � 1 1 � � g (∆ i , X t i , X t i − 1 ; θ ) T W − 1 K n ( θ ) = g (∆ i , X t i , X t i − 1 ; θ ) n n n i =1 i =1 where n W n = 1 g (∆ i , X t i , X t i − 1 ; ¯ θ n ) g (∆ i , X t i , X t i − 1 ; ¯ � θ n ) T n i =1 and ¯ θ n is a consistent estimator. . – p.10/42

  21. GMM estimator ˜ θ n is found by minimizing n n � � � � 1 1 � � g (∆ i , X t i , X t i − 1 ; θ ) T W − 1 K n ( θ ) = g (∆ i , X t i , X t i − 1 ; θ ) n n n i =1 i =1 where n W n = 1 g (∆ i , X t i , X t i − 1 ; ¯ θ n ) g (∆ i , X t i , X t i − 1 ; ¯ � θ n ) T n i =1 and ¯ θ n is a consistent estimator. � n � � n � 1 1 � � ∂ θ g (∆ i , X t i , X t i − 1 ; θ ) T W − 1 ∂ θ K n ( θ ) = g (∆ i , X t i , X t i − 1 ; θ ) = 0 n n n i =1 i =1 . – p.10/42

  22. GMM estimator � n � � n � 1 1 � � ∂ θ g (∆ i , X t i , X t i − 1 ; θ ) T W − 1 ∂ θ K n ( θ ) = g (∆ i , X t i , X t i − 1 ; θ ) n n n i =1 i =1 n 1 � ∂ θ T g (∆ i , X t i , X t i − 1 ; θ ) → S θ W n → V θ n i =1 n ∂ θ K n ( θ ) ∼ 1 � θ V − 1 S T g (∆ i , X t i , X t i − 1 ; θ ) θ n i =1 . – p.11/42

  23. GMM estimator � n � � n � 1 1 � � ∂ θ g (∆ i , X t i , X t i − 1 ; θ ) T W − 1 ∂ θ K n ( θ ) = g (∆ i , X t i , X t i − 1 ; θ ) n n n i =1 i =1 n 1 � ∂ θ T g (∆ i , X t i , X t i − 1 ; θ ) → S θ W n → V θ n i =1 n ∂ θ K n ( θ ) ∼ 1 � θ V − 1 S T g (∆ i , X t i , X t i − 1 ; θ ) θ n i =1 n ∂ θ K n ( θ ) ∼ 1 � θ V − 1 S T A θ ( X t i − 1 )( f θ ( X t i ) − π ∆ θ f θ ( X t i − 1 )) θ n i =1 . – p.11/42

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend