efficient compression of sidh public keys
play

Efficient compression of SIDH public keys Craig Costello 1 David Jao - PowerPoint PPT Presentation

Efficient compression of SIDH public keys Craig Costello 1 David Jao 2 Patrick Longa 1 Michael Naehrig 1 Joost Renes 3 David Urbanik 2 1 Microsoft Research, Redmond, USA 2 University of Waterloo, Ontario, Canada 3 Radboud University, Nijmegen, The


  1. Efficient compression of SIDH public keys Craig Costello 1 David Jao 2 Patrick Longa 1 Michael Naehrig 1 Joost Renes 3 David Urbanik 2 1 Microsoft Research, Redmond, USA 2 University of Waterloo, Ontario, Canada 3 Radboud University, Nijmegen, The Netherlands 1 May 2017 1 May 2017 1 / 14

  2. Supersingular-isogeny Diffie-Hellman ◮ Post-quantum secure (ephemeral) key exchange [JF11] ◮ Based on hardness of finding large-degree isogenies ◮ Small keys ( ≈ 564 bytes public) ◮ Relatively slow compared to other PQ proposals ◮ Key compression ( ≈ 385 bytes), at very high cost [Aza+16] 1 May 2017 2 / 14

  3. Supersingular-isogeny Diffie-Hellman ◮ Post-quantum secure (ephemeral) key exchange [JF11] ◮ Based on hardness of finding large-degree isogenies ◮ Small keys ( ≈ 564 bytes public) ◮ Relatively slow compared to other PQ proposals ◮ Key compression ( ≈ 385 bytes), at very high cost [Aza+16] This talk ◮ Key size reduced by 12 . 5% ( ≈ 330 bytes) ◮ Compression up to 66 × faster ◮ Decompression up to 15 × faster 1 May 2017 2 / 14

  4. Isogeny graphs p = 2 3 · 3 2 − 1 , E / F p 2 : y 2 = x 3 + x , j ( E ) = 24 , ℓ = 2 41 24 66 17 0 48 40 1 May 2017 3 / 14

  5. Isogeny graphs p = 2 3 · 3 2 − 1 , E / F p 2 : y 2 = x 3 + x , j ( E ) = 24 , ℓ = 2 41 2 2 24 2 66 17 0 48 3 40 1 May 2017 3 / 14

  6. Isogeny graphs p = 2 3 · 3 2 − 1 , E / F p 2 : y 2 = x 3 + x , j ( E ) = 24 , ℓ = 2 41 24 66 17 0 48 40 1 May 2017 3 / 14

  7. Isogeny graphs p = 2 3 · 3 2 − 1 , E / F p 2 : y 2 = x 3 + x , j ( E ) = 24 , ℓ = 3 41 3 24 2 2 2 66 17 0 2 48 2 2 2 40 1 May 2017 3 / 14

  8. Key generation = private party A , = private party B , = public keys 41 2 2 24 2 66 17 0 48 3 40 1 May 2017 4 / 14

  9. Key generation = private party A , = private party B , = public keys 41 3 24 2 2 2 66 17 0 2 48 2 2 2 40 1 May 2017 4 / 14

  10. Supersingular-isogeny Diffie-Hellman [JF11] = private party A , = private party B , = public key ր ր ր = 2-graph walk, ց = 3-graph walk, ց ց E A φ A E φ B E B 1 May 2017 5 / 14

  11. Supersingular-isogeny Diffie-Hellman [JF11] = private party A , = private party B , = public key ր ր ր = 2-graph walk, ց = 3-graph walk, ց ց E A [ ℓ e ] = � P , Q � E A φ A E AB E φ B E B 1 May 2017 5 / 14

  12. Supersingular-isogeny Diffie-Hellman [JF11] = private party A , = private party B , = public key ր ր ր = 2-graph walk, ց ց ց = 3-graph walk, ∈ F 2 E A [ ℓ e ] = � P , Q � p 2 (= 4 log p bits) ∈ F p 2 (= 2 log p bits) E A φ A E AB E φ B E B 1 May 2017 5 / 14

  13. Supersingular-isogeny Diffie-Hellman [JF11] = private party A , = private party B , = public key ր ր ր = 2-graph walk, ց ց ց = 3-graph walk, E A [ ℓ e ] = � R , S � ∈ F 2 E A [ ℓ e ] = � P , Q � p 2 (= 4 log p bits) ∈ F p 2 (= 2 log p bits) E A φ A E AB E φ B E B 1 May 2017 5 / 14

  14. Supersingular-isogeny Diffie-Hellman [JF11] = private party A , = private party B , = public key ր ր ր = 2-graph walk, ց ց ց = 3-graph walk, E A [ ℓ e ] = � R , S � ∈ Z 4 ( α, β, γ, δ ) ℓ e ( ≈ 2 log p bits) ∈ F p 2 (= 2 log p bits) E A φ A E AB E φ B E B 1 May 2017 5 / 14

  15. Public-key compression [Aza+16] Compression � R , S � � P , Q � ( α, β, γ, δ ) � α R + β S , γ R + δ S � Decompression � R , S � ( α, β, γ, δ ) � P , Q � ( α, β, γ, δ ) 1 May 2017 6 / 14

  16. Public-key compression [Aza+16] Compression � R , S � Expensive � P , Q � ( α, β, γ, δ ) � α R + β S , γ R + δ S � Decompression � R , S � ( α, β, γ, δ ) � P , Q � ( α, β, γ, δ ) 1 May 2017 6 / 14

  17. Public-key compression [Aza+16] Significantly improve efficiency (up to 66 × ) Compression � R , S � � P , Q � ( α, β, γ, δ ) � α R + β S , γ R + δ S � Decompression � R , S � ( α, β, γ, δ ) � P , Q � ( α, β, γ, δ ) Significantly improve efficiency (up to 15 × ) 1 May 2017 6 / 14

  18. Finding a canonical basis Find R , S such that E [2 372 ] = � R , S � , where 2 372 3 239 � 2 . � # E ( F p 2 ) = 1 May 2017 7 / 14

  19. Finding a canonical basis Find R , S such that E [2 372 ] = � R , S � , where 2 372 3 239 � 2 . � # E ( F p 2 ) = Finding an element of order 2 372 1 Deterministically pick R ∈ E ( F p 2 ) \ 2 E ( F p 2 ) 1 May 2017 7 / 14

  20. Finding a canonical basis Find R , S such that E [2 372 ] = � R , S � , where 2 372 3 239 � 2 . � # E ( F p 2 ) = Finding an element of order 2 372 1 Deterministically pick R ∈ E ( F p 2 ) \ 2 E ( F p 2 ) For E : y 2 = x ( x − γ )( x − δ ), R ∈ 2 E ( F p 2 ) ⇐ ⇒ x R , x R − δ, x R − γ are squares 1 May 2017 7 / 14

  21. Finding a canonical basis Find R , S such that E [2 372 ] = � R , S � , where 2 372 3 239 � 2 . � # E ( F p 2 ) = Finding an element of order 2 372 1 Deterministically pick a non-square x R ∈ F p 2 For E : y 2 = x ( x − γ )( x − δ ), R ∈ 2 E ( F p 2 ) ⇐ ⇒ x R , x R − δ, x R − γ are squares 1 May 2017 7 / 14

  22. Finding a canonical basis Find R , S such that E [2 372 ] = � R , S � , where 2 372 3 239 � 2 . � # E ( F p 2 ) = Finding an element of order 2 372 1 Deterministically pick a non-square x R ∈ F p 2 2 If x 3 R + Ax 2 R + x R is not a square, goto 1 1 May 2017 7 / 14

  23. Finding a canonical basis Find R , S such that E [2 372 ] = � R , S � , where 2 372 3 239 � 2 . � # E ( F p 2 ) = Finding an element of order 2 372 1 Deterministically pick a non-square x R ∈ F p 2 2 If x 3 R + Ax 2 R + x R is not a square, goto 1 � x 3 R + Ax 2 3 Set R ← ( x R , R + x R ) 1 May 2017 7 / 14

  24. Finding a canonical basis Find R , S such that E [2 372 ] = � R , S � , where 2 372 3 239 � 2 . � # E ( F p 2 ) = Finding an element of order 2 372 1 Deterministically pick a non-square x R ∈ F p 2 2 If x 3 R + Ax 2 R + x R is not a square, goto 1 � x 3 R + Ax 2 3 Set R ← ( x R , R + x R ) 4 Set R ← [3 239 ] R 1 May 2017 7 / 14

  25. Finding a canonical basis Find R , S such that E [2 372 ] = � R , S � , where 2 372 3 239 � 2 . � # E ( F p 2 ) = Finding an element of order 2 372 1 Deterministically pick a non-square x R ∈ F p 2 2 If x 3 R + Ax 2 R + x R is not a square, goto 1 � x 3 R + Ax 2 3 Set R ← ( x R , R + x R ) 4 Set R ← [3 239 ] R Finding a canonical basis of E [2 372 ] 1 Pick R ∈ E ( F p 2 ) of order 2 372 2 Pick S ∈ E ( F p 2 ) of order 2 372 3 If E [2 372 ] � = � R , S � , goto 2. 1 May 2017 7 / 14

  26. Transferring to µ n via reduced Tate pairing Transfer the discrete logs to µ n e β = e ( R , P ) e δ = e ( R , Q ) e = e ( R , S ) e − α = e ( S , P ) e − γ = e ( S , Q ) such that P = α R + β S and Q = γ R + δ S 1 May 2017 8 / 14

  27. Transferring to µ n via reduced Tate pairing Transfer the discrete logs to µ n e β = e ( R , P ) e δ = e ( R , Q ) e = e ( R , S ) e − α = e ( S , P ) e − γ = e ( S , Q ) such that P = α R + β S and Q = γ R + δ S e ( R , S ) e ( R , P ) e ( R , Q ) e ( S , P ) e ( S , Q ) f 0 ← f n , R f 0 ← f 0 ( S ) . . . 1 May 2017 8 / 14

  28. Transferring to µ n via reduced Tate pairing Transfer the discrete logs to µ n e β = e ( R , P ) e δ = e ( R , Q ) e = e ( R , S ) e − α = e ( S , P ) e − γ = e ( S , Q ) such that P = α R + β S and Q = γ R + δ S e ( R , S ) e ( R , P ) e ( R , Q ) e ( S , P ) e ( S , Q ) f 0 ← f n , R f 1 ← f n , R f 0 ← f 0 ( S ) f 1 ← f 1 ( P ) . . . . . . 1 May 2017 8 / 14

  29. Transferring to µ n via reduced Tate pairing Transfer the discrete logs to µ n e β = e ( R , P ) e δ = e ( R , Q ) e = e ( R , S ) e − α = e ( S , P ) e − γ = e ( S , Q ) such that P = α R + β S and Q = γ R + δ S e ( R , S ) e ( R , P ) e ( R , Q ) e ( S , P ) e ( S , Q ) f 0 ← f n , R f 0 ← f 0 ( S ) f 1 ← f 0 ( P ) . . . . . . 1 May 2017 8 / 14

  30. Transferring to µ n via reduced Tate pairing Transfer the discrete logs to µ n e β = e ( R , P ) e δ = e ( R , Q ) e = e ( R , S ) e − α = e ( S , P ) e − γ = e ( S , Q ) such that P = α R + β S and Q = γ R + δ S e ( R , S ) e ( R , P ) e ( R , Q ) e ( S , P ) e ( S , Q ) f 0 ← f n , R f 2 ← f n , R f 0 ← f 0 ( S ) f 1 ← f 0 ( P ) f 2 ← f 2 ( Q ) . . . . . . . . . 1 May 2017 8 / 14

  31. Transferring to µ n via reduced Tate pairing Transfer the discrete logs to µ n e β = e ( R , P ) e δ = e ( R , Q ) e = e ( R , S ) e − α = e ( S , P ) e − γ = e ( S , Q ) such that P = α R + β S and Q = γ R + δ S e ( R , S ) e ( R , P ) e ( R , Q ) e ( S , P ) e ( S , Q ) f 0 ← f n , R f 0 ← f 0 ( S ) f 1 ← f 0 ( P ) f 2 ← f 0 ( Q ) . . . . . . . . . 1 May 2017 8 / 14

  32. Transferring to µ n via reduced Tate pairing Transfer the discrete logs to µ n e β = e ( R , P ) e δ = e ( R , Q ) e = e ( R , S ) e − α = e ( S , P ) e − γ = e ( S , Q ) such that P = α R + β S and Q = γ R + δ S e ( R , S ) e ( R , P ) e ( R , Q ) e ( S , P ) e ( S , Q ) f 0 ← f n , R f 3 ← f n , S f 0 ← f 0 ( S ) f 1 ← f 0 ( P ) f 2 ← f 0 ( Q ) f 3 ← f 3 ( P ) . . . . . . . . . . . . 1 May 2017 8 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend