efficiency for continuous facility location
play

Efficiency for continuous facility location problems with attraction - PDF document

Efficiency for continuous facility location problems A. Jourani Efficiency for continuous facility location problems with attraction and repulsion Abderrahim Jourani Universit e de Dijon Institut de Math ematiques de Bourgogne UMR


  1. Efficiency for continuous facility location problems A. Jourani Efficiency for continuous facility location problems with attraction and repulsion ∗ Abderrahim Jourani Universit´ e de Dijon Institut de Math´ ematiques de Bourgogne UMR 5584-CNRS jourani@u-bourgogne.fr Journ´ ees Franco-Chiliennes d’Optimisation Toulon, may 2008 ∗ collaboration with C. Michelot and M. Ndiaye ∗ to appear in AOR ∗ http ://math.u-bourgogne.fr/IMB/IMB.html Universit´ e de Dijon France Page 1

  2. Efficiency for continuous facility location problems A. Jourani • ( X, � · � ) normed linear space • a + i ∈ X , ω + i > 0 ∀ i = 1 , · · · , m • a − i ∈ X, ω − i > 0 ∀ i = 1 , · · · , n � ω + i � x − a + i � ( P + ) min x � � ω + i � x − a + i � − i � x − a − i � ( P + − ) min ω − x Universit´ e de Dijon France Page 2

  3. Efficiency for continuous facility location problems A. Jourani M ω set of solutions to ( P + ) ◮ X inner product space ⇒ M ω ⊂ co { a + i : i = 1 , · · · , p } ⇒ M ω ∩ co { a + i : i = 1 , · · · , p } � = ∅ ◮ dim X = 2 = Can we replace co { a + i : i = 1 , · · · , p } ? What happens in the case of ( P + − ) ? Universit´ e de Dijon France Page 3

  4. Efficiency for continuous facility location problems A. Jourani Vector Optimization R p mapping, D ⊂ Y F : Y �→ I ( P ) min y ∈ D F ( y ) • y 0 weakly efficient if R p ∄ y ∈ D ; F ( y ) − F ( y 0 ) ∈ intI − • y 0 strictly efficient if R p ∄ y ∈ D, y � = y 0 ; F ( y ) − F ( y 0 ) ∈ I − • y 0 efficient if R p ∄ y ∈ D ; F ( y ) − F ( y 0 ) ∈ I F ( y ) � = F ( y 0 ) − , Universit´ e de Dijon France Page 4

  5. Efficiency for continuous facility location problems A. Jourani Basic elements • X euclidean • Ω ⊂ X convex and closed • A + ⊂ X, A − ⊂ X compact, A + ∩ A − = ∅ • x ∈ X Universit´ e de Dijon France Page 5

  6. Efficiency for continuous facility location problems A. Jourani Weak efficiency : x ∈ WE ( A + , A − , Ω) ∃ a + ∈ A + , � a + − x � ≤ � a + − y �     ∀ y ∈ Ω , ou  ∃ a − ∈ A − , � a − − x � ≥ � a − − y �   Strict efficiency : x ∈ SE ( A + , A − , Ω)  ∃ a + ∈ A + , � a + − x � < � a + − y �  ∀ y ∈ Ω , y � = x, ou ∃ a − ∈ A − , � a − − x � > � a − − y �  Efficiency : x ∈ E ( A + , A − , Ω) ∃ a + ∈ A + , � a + − x � < � a + − y �      ou     ∃ a − ∈ A − , � a − − x � > � a − − y �       ∀ y ∈ Ω , y � = x, ou  ∀ a + ∈ A + , � a + − x � ≤ � a + − y �            et      ∀ a − ∈ A − , � a − − x � ≥ � a − − y �     Universit´ e de Dijon France Page 6

  7. Efficiency for continuous facility location problems A. Jourani NSOC ◮ (Carrizosa-Plastria) A − = ∅ . x weakly efficient ⇐ ⇒ � ∂ ( � · − a + � )( x )] + N (Ω , x ) 0 ∈ co[ a + ∈ A + A + = { a + n } , A − = { a − 1 , · · · , a + 1 , · · · , a − m } ◮ If x is locally weakly efficient, then n m ∃ λ + ≥ 0 , ∃ λ − ≥ 0 , � � λ + λ − i + j = 1 i =1 j =1 [ � m j =1 λ − j ∂ ( � · − a − j � )( x )] � [ � n i =1 λ + i ∂ ( � · − a + i � )( x ) + N (Ω , x )] � = ∅ The last one is also sufficient provided that the norm and Ω are locally polyhedral. Universit´ e de Dijon France Page 7

  8. Efficiency for continuous facility location problems A. Jourani Notations. • Ω = X : SE ( A + , A − ), E ( A + , A − ), WE ( A + , A − ) • SE ( A + ) = SE ( A + , ∅ ) • E ( A + ) = E ( A + , ∅ ) • WE ( A + ) = WE ( A + , ∅ ) Properties ◮ SE ( A + ) ⊂ SE ( A + , A − ), E ( A + ) ⊂ E ( A + , A − ), WE ( A + ) ⊂ WE ( A + , A − ) ◮ A + ∩ Ω ⊂ SE ( A + , A − , Ω) ⊂ E ( A + , A − , Ω) ⊂ WE ( A + , A − , Ω) ◮ SE ( A + , A − ) ∩ Ω ⊂ SE ( A + , A − , Ω) E ( A + , A − ) ∩ Ω ⊂ E ( A + , A − , Ω) WE ( A + , A − ) ∩ Ω ⊂ WE ( A + , A − , Ω) Universit´ e de Dijon France Page 8

  9. Efficiency for continuous facility location problems A. Jourani Weak efficiency Theorem 1. x ∈ WE ( A + , A − ) ⇐ ⇒ co( A + ) ∩ co( { x } ∪ A − ) � = ∅ . Corollary 1. ⇒ A − = ∅ WE ( A + , A − ) compact ⇐ � WE ( A + , A − ) = co( A + ) Proposition 1. co( A + ) ∩ co( A − ) � = ∅ ⇐ ⇒ WE ( A + , A − ) = X Universit´ e de Dijon France Page 9

  10. Efficiency for continuous facility location problems A. Jourani Strict efficiency Theorem 2. • co( A + ) ∩ ri[co( { x } ∪ A − )] � = ∅ = ⇒ x ∈ SE ( A + , A − ) • SE ( A + , A − ) = co( A + ) + cl[cone[co( A + ) − co( A − )]] Corollary 2. • SE ( A + , A − ) closed and convex • co( A + ) et co( A − ) polyhedral : SE ( A + , A − ) = co( A + ) + cone[co( A + ) − co( A − )] Corollary 3. • co( A + ) ∩ co( A − ) � = ∅ = ⇒ co( A − ) ⊂ SE ( A + , A − ) Universit´ e de Dijon France Page 10

  11. Efficiency for continuous facility location problems A. Jourani Theorem 2. x ∈ ri[ SE ( A + , A − )] ⇔ ri[co( A + )] ∩ ri[co( { x }∪ A − )] � = ∅ . Universit´ e de Dijon France Page 11

  12. Efficiency for continuous facility location problems A. Jourani Efficiency Proposition 2. ri[co( A + )] ∩ ri[co( A − )] � = ∅ ⇐ ⇒ E ( A + , A − ) = X Theorem 3. • A + et A − not contained in the same hyperplan : E ( A + , A − ) = SE ( A + , A − ) • A + et A − contained in the same hyperplan H : ri[co( A + )] ∩ ri[co( A − )] = ∅ ⇐ ⇒ E ( A + , A − ) ⊂ H ri[co( A + )] ∩ ri[co( A − )] = ∅ • � E ( A + , A − ) = SE ( A + , A − ) � = X Universit´ e de Dijon France Page 12

  13. Efficiency for continuous facility location problems A. Jourani Coincidence Theorem 5. K = co( A + ) + cl[cone[co( A + ) − co( A − )]] E ( A + , A − ) = WE ( A + , A − ) • ou E ( A + , A − ) = SE ( A + , A − ) co( A + ) ∩ co( A − ) = ∅ • ⇓ SE ( A + , A − ) = E ( A + , A − ) = WE ( A + , A − ) = K Corollary 4. E ( A + , A − ) et WE ( A + , A − ) closed and convex Universit´ e de Dijon France Page 13

  14. Efficiency for continuous facility location problems A. Jourani Constrained efficiency Proj Ω WE ( A + , A − ) ⊂ WE ( A + , A − , Ω) Inner product spaces ( X, � · � ) linear normed space dim X ≥ 3. Theorem 6. i ) X inner product space � ii ) ∀ A + , A − ⊂ X with A + ∩ A − = ∅ , card A + < + ∞ , card A − < + ∞ , we have x ∈ WE ( A + , A − ) ⇐ ⇒ co( A + ) ∩ co( { x } ∪ A − ) � = ∅ . Universit´ e de Dijon France Page 14

  15. Efficiency for continuous facility location problems A. Jourani Complexity Theorem 7. A + , A − ⊂ I R 2 , | A + | = n , | A − | = m , co A + ∩ co A − = ∅ ⇓ SE ( A + , A − ) can be computed in O ( nm ) + O ( n log n ) time Universit´ e de Dijon France Page 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend