effects of a time varying string tension string repulsion
play

Effects of a Time-Varying String Tension & String Repulsion in - PowerPoint PPT Presentation

Effects of a Time-Varying String Tension & String Repulsion in Momentum Space Tau-dependent string tension with N. Hunt-Smith Publication in preparation Physics motivations? A primitive model Results: Strangeness-pT correlations String


  1. Effects of a Time-Varying String Tension & String Repulsion in Momentum Space Tau-dependent string tension with N. Hunt-Smith Publication in preparation Physics motivations? A primitive model Results: Strangeness-pT correlations String repulsion in momentum space with C. Duncan arXiv:1912.09639 Why momentum space? Two long, straight, parallel strings Work in progress: towards more complicated topologies Peter Skands (Monash University) January, 2020, Lund

  2. <latexit sha1_base64="JqW1qZV98otmV2k0JL7xjy7ACs0=">ACBHicdVBNS8NAEN3Ur1q/oh57WSyCBwlJrVpvRS8eK9hWaELZbDft0t0k7G6Enrw4l/x4kERr/4Ib/4bN2kEFX0w8Hhvhpl5fsyoVLb9YZQWFpeWV8qrlbX1jc0tc3unK6NEYNLBEYvEjY8kYTQkHUVIzexIj7jPT8yUXm926JkDQKr9U0Jh5Ho5AGFCOlpYFZFdAdKe1zaFt19xC6HKmx4GnAZwOzZlvHtnN2YmvTzpGTpnPkQKdQaqBAe2C+u8MIJ5yECjMkZd+xY+WlSCiKGZlV3ESGOEJGpG+piHiRHp/sQM7mtlCINI6AoVzNXvEyniUk65rzuzE+VvLxP/8vqJCpeSsM4USTE80VBwqCKYJYIHFJBsGJTRAWVN8K8RgJhJXOraJD+PoU/k+6dctpWI2rRq1XsRBlWwBw6A05BC1yCNugADO7A3gCz8a98Wi8GK/z1pJRzOyCHzDePgGN65du</latexit> <latexit sha1_base64="HK6rTLiZ/EWGiv3Y9JXQACyvjo=">AC3icbVDLSgNBEJyNrxhfqx69DAlCRAy7EtCLEPTiMYJ5QBJC72Q2GTI7u8zMCmHZnL34K148KOLVH/Dm3zh5HDSxoKGo6qa7y4s4U9pxvq3Myura+kZ2M7e1vbO7Z+8f1FUYS0JrJOShbHqgKGeC1jTnDYjSHwOG14w5uJ3igUrFQ3OtRDsB9AXzGQFtpK6drxflCR5fjfFZ25dAEkgTmeLx6Ri3hxBFgGXLjglZwq8TNw5KaA5ql37q90LSRxQoQkHpVquE+lOAlIzwma8eKRkCG0KctQwUEVHWS6S8pPjZKD/uhNCU0nq/JxIlBoFnukMQA/UojcR/NasfYvOwkTUaypILNFfsyxDvEkGNxjkhLNR4YAkczciskATCTaxJczIbiLy+T+nJLZfKd+VC5XoeRxYdoTwqIhdoAq6RVUQwQ9omf0it6sJ+vFerc+Zq0Zaz5ziP7A+vwBKI2Z4g=</latexit> Tension and the Lund String Model ๏ Cornell potential • Potential V(r) between static (lattice) and/or steady-state (hadron spectroscopy) colour-anticolour charges: − a V ( r ) = r + κ r String part Coulomb part Dominates for r & 0 . 2 fm • Lund model built on the asymptotic large- r linear behaviour ๏ But intrinsically only a statement about the late-time / long- distance / steady-state situation. Deviations at early times? • Coulomb effects in the grey area between shower and hadronization? Low- r slope > κ favours “early” production of quark-antiquark pairs? • + Pre-steady-state effects from a (rapidly) expanding string? � 2 P E T ER S K A ND S

  3. <latexit sha1_base64="3BhDq5dkSG8conVHSg0oex4ox0=">AB+XicdVDLSsNAFJ34rPUVdelmsAiuYqJV60YKblxW6AuaUCbTSTt0MhlmJoUS+iduXCji1j9x5984TSOo6IELh3Pu5d57QsGo0q7YS0tr6yurZc2yptb2zu79t5+WyWpxKSFE5bIbogUYZSTlqaka6QBMUhI51wfDv3OxMiFU14U08FCWI05DSiGkj9W27CX0hE6ET6J36GqV9u+I6F653felC13Fz5KTmnXvQK5QKNDo2+/+IMFpTLjGDCnV81yhgwxJTEjs7KfKiIQHqMh6RnKUxUkOWXz+CxUQYwSqQprmGufp/IUKzUNA5NZ4z0SP325uJfXi/VUS3IKBepJhwvFkUpg+bPeQxwQCXBmk0NQVhScyvEIyQR1iasgnh61P4P2mfOV7Vqd5XK/WbIo4SOARH4AR4ArUwR1ogBbAYAIewBN4tjLr0XqxXhetS1YxcwB+wHr7BKwukwo=</latexit> Pre-Equilibrium Effects? ๏ In a recent paper (JHEP 04(2018)145), Berges, Floerchinger, and Venugopalan developed a framework for • “computing the entanglement between spatial regions for Gaussian states in quantum field theory” ๏ which they • “… applied to explore an expanding light cone geometry in the […] Schwinger model for QED in 1+1 space-time dimensions. “ • ➤ Entanglement entropy is extensive in rapidity at early times • ➤ “a thermal density matrix for excitations around a coherent field with a time dependent temperature ”: T ∝ 1 / τ ๏ What does this mean in Lund Model context? � 3 P E T ER S K A ND S

  4. <latexit sha1_base64="3BhDq5dkSG8conVHSg0oex4ox0=">AB+XicdVDLSsNAFJ34rPUVdelmsAiuYqJV60YKblxW6AuaUCbTSTt0MhlmJoUS+iduXCji1j9x5984TSOo6IELh3Pu5d57QsGo0q7YS0tr6yurZc2yptb2zu79t5+WyWpxKSFE5bIbogUYZSTlqaka6QBMUhI51wfDv3OxMiFU14U08FCWI05DSiGkj9W27CX0hE6ET6J36GqV9u+I6F653felC13Fz5KTmnXvQK5QKNDo2+/+IMFpTLjGDCnV81yhgwxJTEjs7KfKiIQHqMh6RnKUxUkOWXz+CxUQYwSqQprmGufp/IUKzUNA5NZ4z0SP325uJfXi/VUS3IKBepJhwvFkUpg+bPeQxwQCXBmk0NQVhScyvEIyQR1iasgnh61P4P2mfOV7Vqd5XK/WbIo4SOARH4AR4ArUwR1ogBbAYAIewBN4tjLr0XqxXhetS1YxcwB+wHr7BKwukwo=</latexit> Implications for Lund Model? ๏ I asked an honours student (N. Hunt-Smith) to take our 4 th year quantum information course to see if we could parse the entanglement arguments • He learned a lot but we still didn’t have a dictionary ๏ We imagine it means the steady state captured by the lattice gets to have thermal excitations characterised by T ∝ 1 / τ • But what does that mean? ๏ Additional (virtual) quark-antiquark pairs with thermal distribution, which decay away with time? • Allow some of these to become real ➤ new mechanism for string breaks? • First step poor man’s model : to explore effects of a higher effective energy scale and/or steeper potential well being relevant at early times. � 4 P E T ER S K A ND S

  5. <latexit sha1_base64="mjNCfjTfO43HIxrXkNGUlAHruog=">ACJHicdVBaxNBGJ2tWtNoa9Sjl8EgtBTS2Ro1IkhBDx4rmLaQDcu3ky/JkJndYeZbISz5MV78K148qMWDF3+Ls9sUqtQHwze+z5m3susVp6E+BVt3Lh5a/N2a6t95+72zr3O/QcnvidxKEsdOHOMvCoVY5DUqTxzDoEk2k8zRZvav/0IzqvivwDLS2ODcxyNVUSKEhp51XyFjVBsgBrIU0M0NyZiubozGo3ISj3eGJdYang8UEj8H1eX6nYSztd0Xsm4pfPBRc90aAhg/hpzO10mVrHKedH8mkKXBnKQG70exsDSuwJGSGlftpPRoQS5ghqNAczDox1UTcsWfBGXCp4ULJyfeqFc3KjDeL0WJusU/l+vFq/zRiVNB+NK5bYkzOXFQ9NS8xC5boxPlENJehkISKfCX7mcgwNJod2KOEyKf8/OTnsxf1e/32/e/R6XUeLPWKP2S6L2Qt2xN6xYzZkn1iX9g39j36H2NzqOfF6Mb0XrnIfsL0e8/A3WkVw=</latexit> <latexit sha1_base64="Kh5SYRXNhbg9tajfJiRiviyG0+g=">ACMXicdVBdSxtBFJ21rdX40aiPvgwNglIszb140EJ1Ic8WmhUyIZwd3LXDJnZXWbuCmHJX+qL/6T0xQel9LV/wkncQiv2wMDhnHOZe0+ca+VIiLtg4dXrN4tvl5ZrK6tr6+/qG5sXLiusxK7MdGavYnCoVYpdUqTxKrcIJtZ4GY8/z/zLG7ROZelXmuTYN3CdqkRJIC8N6p1oDHkOg8gAjawpMUmuxFBscdPeOUJ/oFHZ6gJnoVphNZU8UG9IZqfRHh8ILhoijnm5Cj8GPKwUhqswvmg/j0aZrIwmJLU4FwvFDn1S7CkpMZpLSoc5iDHcI09T1Mw6Prl/OIp3/HKkCeZ9S8lPlf/nijBODcxsU/OdnXPvZn4ktcrKDnqlyrNC8JUPn2UFJpTxmf18aGyKElPAFpld+VyxFYkORLrvkS/lzK/08u9pthq9n60mq0T6s6ltg2e892WcgOWZt12DnrMsm+sR/snj0Et8Fd8DP49RdCKqZLfYPgt+PVXeqTw=</latexit> <latexit sha1_base64="nynqxQqpLVYTfntAtUYbM1XFQTo=">ACXicdVDLSsNAFJ34rPVdelmsAgupE60at1IwYUuK9gHNCFMpN26EwSZiZCd268VfcuFDErX/gzr9xmkZQ0QMXDufcy73+DFnSiP0Yc3Mzs0vLBaWisrq2vrpY3NloSWiTRDySHR8rylIm5pTjuxpFj4nLb94cXEb9SqVgU3uhRTF2B+yELGMHaSF4JOkMcx9hD0FMQNvZdwTWAynS9o6CMTYK5VR5RjZycIogrKkJGafWRDO1fKIEfDK707vYgkgoacKxU10axdlMsNSOcjotOomiMyRD3adfQEAuq3DT7ZAx3jdKDQSRNhRpm6veJFAulRsI3nZMz1W9vIv7ldRMd1NyUhXGiaUimi4KEQx3BSywxyQlmo8MwUQycyskAywx0Sa8ognh61P4P2kdVuxqpXpdLdfP8zgKYBvsgD1g1NQB1egAZqAgDvwAJ7As3VvPVov1u0dcbKZ7bAD1hvn2f/mYc=</latexit> Tau-Dependent String Tension ๏ As a minimal modification to the existing string model, we studied the consequences of allowing an effective string tension κ e ff ( τ ) = κ 0 + ∆ κ therm ( τ ) • where and with τ 0 a κ 0 ∼ 1 GeV / fm ∆ κ therm ( τ ) ∝ 1 / ( τ + τ 0 ) regularisation parameter that keeps the effective string tension finite and physically reflects that the string model itself is anyway not appropriate for very early (perturbative) times. ๏ Some Questions: • To model Coulomb effect, study Δ κ ~ d/dr ( -1/r ) = 1/r 2 ? (and does 1/r 2 really map to Δ κ ~ 1/ τ 2 ?) ๏ • To model thermal effect, does T ~ 1/ τ really map to Δ κ ~ 1/ τ ? • (Nuts & bolts not strongly tied to any particular form) 5 � P E T ER S K A ND S

  6. Calculating Tau ๏ To use our modified κ ( τ ), need to know the τ value of each vertex • In UserHooks, we have access to the Γ = κ 2 x + x - = κ 2 τ 2 hyperbolic coordinate (via StringEnd) • Solve for τ but now using a non-linear relationship (with < τ >=1.2 GeV -1 ) ◆ 2 ✓ k < τ > τ 2 Γ = κ 0 + ∆ κ max τ + k < τ > • with Δ κ max and k as free parameters governing the shape of κ ( τ ). • (Solution is rather unattractive though.) s √ √ ! max k 2 < τ > 2 + 2 ∆ κ max k 2 < τ > 2 τ = 1 Γ − k < τ > − ∆ κ max k < τ > 1 Γ − 2 ∆ κ max Γ k < τ > + ∆ κ 2 + κ 2 κ 2 κ 2 2 2 κ 0 κ 0 κ 0 0 0 0 6 � P E T ER S K A ND S

  7. <latexit sha1_base64="2s6XM2N1uLTqxsIu+dLW43Fs/o=">ACN3icbVBNa9tAFylTes4Seskx16WmoIDrSMVQ0MhEJpLT8WBOAlYjnhaP9mLV9Ky+1QwQv+ql/yN3JpLDi2h1/yDrD8O+ejAwjDzHm9nYq2kJd/7a28eLn6nVtrb6+sfnmbWNr+9TmhRHYE7nKzXkMFpXMsEeSFJ5rg5DGCs/iydHMP/uJxso8O6GpxkEKo0wmUgA5KWr86EZlmAKNTVqCEKip+lgMq1ZIUOzyAx4qTKjlhuxXJ4dGjsa0e1EGn8IJaA2Rv7cgi4UqajT9tj8Hf06CJWmyJbpR4yoc5qJIMSOhwNp+4GsalGBICoVPSwsahATGHf0QxStINynrviH5wy5Elu3MuIz9WHGyWk1k7T2E3OItqn3kz8n9cvKNkflDLTBWEmFoeSQnHK+axEPpQGBampIyCMdH/lYgwGBLmq6E4Gnk5+T0czvotDvHnebht2UdNfaOvWctFrAv7JB9Z13WY4L9YtfsD/vrXo3q3bzG64i13dtgjeHf3tbmsZQ=</latexit> UserHooks implementation in Pythia ๏ Want to generate string breaks with modifiable strangeness ratios and p T broadening values. • Problem: no easy way to modify the trial probabilities; doChangeFragPar() appears to require constant reinitialisation (and changes are not re-set after use). • Solution for strangeness enhancement: no change of trial probabilities; implement instead as up/down suppression using doVetoFragmentation(). ๏ Generate trial breakups as usual, using nominal P s:ud • Always accept a strange quark P accept ,ud ( τ ) = ( P s : ud ) 1 − κ 0 / κ ( τ ) • Accept u,d with probability In limit κ ≫ κ 0 : same probability to accept ud as was already generated for s ๏ In limit κ ~ κ 0 : probability to accept ud → 1 ➤ effective P s:ud unchanged ๏ 7 � P E T ER S K A ND S

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend