effective field theory for bsm
play

EFFECTIVE FIELD THEORY FOR BSM Roberto Contino Scuola Normale - PowerPoint PPT Presentation

EFFECTIVE FIELD THEORY FOR BSM Roberto Contino Scuola Normale Superiore, Pisa INFN, Pisa pre-SUSY2018 school, 17-20 July, 2018, Barcelona SMEFT Lagrangian Effective Lagrangian for a Higgs doublet Buchmuller and Wyler NPB 268 (1986) 621 ...


  1. EFFECTIVE FIELD THEORY FOR BSM Roberto Contino Scuola Normale Superiore, Pisa INFN, Pisa pre-SUSY2018 school, 17-20 July, 2018, Barcelona

  2. SMEFT Lagrangian

  3. Effective Lagrangian for a Higgs doublet Buchmuller and Wyler NPB 268 (1986) 621 ... Grzadkowski et al. JHEP 1010 (2010) 085 X c i O i ≡ L SM + ∆ L SILH + ∆ L cc + ∆ L dipole + ∆ L V + + ∆ L 4 ψ L = L SM + ¯ i 16 operators Best operator basis to test light composite Higgs (12 CP even, 4 CP odd) Giudice, Grojean, Pomarol, Rattazzi JHEP 0706 (2007) 045 ∆ L SILH = ¯ c H + ¯ c T − ¯ c 6 λ H † ← → ⇣ ⌘⇣ H † ← → ⌘ � 3 2 v 2 ∂ µ � H † H H † H D µ H H † H � � � � ∂ µ D µ H 2 v 2 v 2 ⇣ ¯ q L H c u R + ¯ q L Hd R + ¯ c u c d c l ⌘ v 2 y l H † H ¯ v 2 y u H † H ¯ v 2 y d H † H ¯ + L L Hl R + h . c . + i ¯ ( D ν W µ ν ) i + i ¯ c B g � c W g H † σ i ← → H † ← → ⇣ ⌘ ⇣ ⌘ D µ H D µ H ( ∂ ν B µ ν ) 2 m 2 2 m 2 W W + i ¯ µ ν + i ¯ c HB g � c HW g ( D µ H ) † σ i ( D ν H ) W i ( D µ H ) † ( D ν H ) B µ ν m 2 m 2 W W c γ g � 2 c g g 2 + ¯ H † HB µ ν B µ ν + ¯ S H † HG a µ ν G aµ ν m 2 m 2 W W + i ˜ µ ν + i ˜ c HB g � c HW g ( D µ H ) † σ i ( D ν H ) ˜ ( D µ H ) † ( D ν H ) ˜ W i B µ ν m 2 m 2 W W c γ g � 2 c g g 2 + ˜ B µ ν + ˜ H † HB µ ν ˜ µ ν ˜ S H † HG a G aµ ν m 2 m 2 W W 3

  4. Effective Lagrangian for a Higgs doublet Buchmuller and Wyler NPB 268 (1986) 621 ... Grzadkowski et al. JHEP 1010 (2010) 085 X c i O i ≡ L SM + ∆ L SILH + ∆ L cc + ∆ L dipole + ∆ L V + + ∆ L 4 ψ L = L SM + ¯ i 6 current-current operators i ¯ c � ∆ L cc = i ¯ c Hq H † ← → H † σ i ← → Hq q L γ µ q L ) � � � q L γ µ σ i q L � � � (¯ + ¯ D µ H D µ H v 2 v 2 � ¯ + i ¯ + i ¯ c Hu c Hd H † ← → H † ← → u R γ µ u R ) d R γ µ d R � � � � � (¯ D µ H D µ H v 2 v 2 ✓ i ¯ ◆ c Hud H c † ← → u R γ µ d R ) � � + (¯ + h . c . D µ H v 2 + i ¯ c HL H † ← → � ¯ L L γ µ L L � � � D µ H v 2 4

  5. Effective Lagrangian for a Higgs doublet Buchmuller and Wyler NPB 268 (1986) 621 ... Grzadkowski et al. JHEP 1010 (2010) 085 X c i O i ≡ L SM + ∆ L SILH + ∆ L cc + ∆ L dipole + ∆ L V + + ∆ L 4 ψ L = L SM + ¯ i 8 dipole operators c uB g 0 c uW g c uG g S ∆ L dipole = ¯ q L H c σ µ ν u R B µ ν + ¯ µ ν + ¯ q L σ i H c σ µ ν u R W i q L H c σ µ ν λ a u R G a y u ¯ y u ¯ y u ¯ µ ν m 2 m 2 m 2 W W W c dB g 0 c dW g c dG g S + ¯ q L H σ µ ν d R B µ ν + ¯ µ ν + ¯ q L σ i H σ µ ν d R W i q L H σ µ ν λ a d R G a y d ¯ y d ¯ y d ¯ µ ν m 2 m 2 m 2 W W W c lB g 0 c lW g + ¯ L L H σ µ ν l R B µ ν + ¯ L L σ i H σ µ ν l R W i y l ¯ y l ¯ µ ν + h . c . m 2 m 2 W W 5

  6. Effective Lagrangian for a Higgs doublet Buchmuller and Wyler NPB 268 (1986) 621 ... Grzadkowski et al. JHEP 1010 (2010) 085 X c i O i ≡ L SM + ∆ L SILH + ∆ L cc + ∆ L dipole + ∆ L V + + ∆ L 4 ψ L = L SM + ¯ i 22 four-fermion operators 7 operators built with gauge fields only (5 CP even, 2 CP odd) ∆ L V = ¯ ( D µ W µ ν ) i ( D ρ W ρν ) i + ¯ ( ⇥ µ B µ ν ) ( ⇥ ρ B ρν ) + ¯ c 2 W c 2 B c 2 G ( D µ G µ ν ) a ( D ρ G ρν ) a m 2 m 2 m 2 W W W c 3 W g 3 c 3 G g 3 + ¯ + ¯ � ijk W i ν µ W j ρ ν W k µ S f abc G a ν µ G b ρ ν G c µ m 2 m 2 ρ ρ W W c 3 W g 3 c 3 G g 3 + ˜ + ˜ ˜ ν ˜ � ijk W i ν µ W j ρ W k µ S f abc G a ν µ G b ρ G c µ m 2 m 2 ν ρ ρ W W In total: 59 dim-6 operators for 1 SM family For a review see: RC, Ghezzi, Grojean, Muhlleitner, Spira JHEP 07 (2013) 035 6

  7. Naive estimate at the matching scale (SILH power counting): m ∗ ✓ v 2 ✓ m 2 ✓ m 2 ◆ ◆ ◆ W W c H , ¯ c T , ¯ c 6 , ¯ c ψ ∼ O , c W , ¯ c B ∼ O , c HW , ¯ c HB , ¯ c γ , ¯ c g ∼ O ¯ ¯ ¯ f 2 M 2 16 π 2 f 2 m ∗ ✓ m 2 ! λ 2 v 2 v 2 ✓ λ u λ d ◆ ◆ ψ W c 0 c H ψ , ¯ H ψ ∼ O , c Hud ∼ O , c ψ W , ¯ c ψ B , ¯ c ψ G ∼ O ¯ ¯ ¯ g 2 f 2 g 2 f 2 16 π 2 f 2 ⇤ ⇤ where f ≡ m ∗ /g ∗

  8. Processes with 0, 1, 2, ... Higgses related Q: Which operators are already constrained by experiments w/o Higgs ? In total: 59 dim-6 operators Elias-Miro, Espinosa, Masso, Pomarol 17 involve the Higgs JHEP 1311 (2013) 066 Pomarol, Riva JHEP 01 (2014) 151 8 affect Higgs physics only 8

  9. Operators that affect Higgs physics only Elias-Miro, Espinosa, Masso, Pomarol JHEP 1311 (2013) 066 Pomarol, Riva JHEP 01 (2014) 151 shifts all Higgs couplings O H = ( ∂ µ | H | 2 ) 2 O BB = g 0 2 | H | 2 B µ ν B µ ν modify inclusive rates O W W = g 2 | H | 2 W µ ν W µ ν (constrained by fit to O GG = g 2 s | H | 2 G µ ν G µ ν Higgs couplings) O y d = y d | H | 2 ¯ q L Hd R q L ˜ O y u = y u | H | 2 ¯ Hu R shift h ψψ O y e = y e | H | 2 ¯ L L He R O 6 = λ | H | 6 9

  10. Operators that affect Higgs physics only Elias-Miro, Espinosa, Masso, Pomarol JHEP 1311 (2013) 066 Pomarol, Riva JHEP 01 (2014) 151 O H = ( ∂ µ | H | 2 ) 2 O BB = g 0 2 | H | 2 B µ ν B µ ν h → γγ modify inclusive rates O W W = g 2 | H | 2 W µ ν W µ ν (constrained by fit to h → Z γ Higgs couplings) gg → h O GG = g 2 s | H | 2 G µ ν G µ ν O y d = y d | H | 2 ¯ q L Hd R q L ˜ O y u = y u | H | 2 ¯ Hu R O y e = y e | H | 2 ¯ L L He R O 6 = λ | H | 6 10

  11. Alloul, Fuks, Sanz arXiv:1310.5150 2000 Operators that affect Higgs physics only 1800 SM 1600 1400 Arbitrary Units 1200 1000 c W =0 . 1 ¯ 800 600 O H = ( ∂ µ | H | 2 ) 2 c HW =0 . 1 ¯ 400 200 O BB = g 0 2 | H | 2 B µ ν B µ ν 0 modify also differential 200 300 400 500 600 700 800 900 m (GeV) Vh O W W = g 2 | H | 2 W µ ν W µ ν rates, can be probed by: O GG = g 2 s | H | 2 G µ ν G µ ν decays h → WW*, h → ZZ* ( angular distributions) ─ O y d = y d | H | 2 ¯ q L Hd R Higgs associated production hV (Higgs p T , ─ m Vh , and angular distributions) q L ˜ O y u = y u | H | 2 ¯ Hu R single-Higgs production via VBF O y e = y e | H | 2 ¯ ─ L L He R O 6 = λ | H | 6 11

  12. Operators that affect Higgs physics only Elias-Miro, Espinosa, Masso, Pomarol JHEP 1311 (2013) 066 Pomarol, Riva JHEP 01 (2014) 151 O H = ( ∂ µ | H | 2 ) 2 O BB = g 0 2 | H | 2 B µ ν B µ ν O W W = g 2 | H | 2 W µ ν W µ ν O GG = g 2 s | H | 2 G µ ν G µ ν modifies p T spectrum of gg → h + jet [ top loop vs point-like interaction ] O y d = y d | H | 2 ¯ q L Hd R q L ˜ O y u = y u | H | 2 ¯ Hu R O y e = y e | H | 2 ¯ L L He R h h vs O 6 = λ | H | 6 Azatov, Paul JHEP 1401 (2014) 014 Grojean, Salvioni, Schlaffer, Weiler JHEP 1405 (2014) 022 12

  13. Operators that affect Higgs physics only Elias-Miro, Espinosa, Masso, Pomarol JHEP 1311 (2013) 066 Pomarol, Riva JHEP 01 (2014) 151 O H = ( ∂ µ | H | 2 ) 2 O BB = g 0 2 | H | 2 B µ ν B µ ν O W W = g 2 | H | 2 W µ ν W µ ν O GG = g 2 s | H | 2 G µ ν G µ ν O y d = y d | H | 2 ¯ q L Hd R q L ˜ O y u = y u | H | 2 ¯ Hu R O y e = y e | H | 2 ¯ L L He R yet un-probed gg → hh O 6 = λ | H | 6 13

  14. Renormalization of EFT

  15. RG evolution of coefficients UV theory matching • Loops of light (SM) particles induce the RG m ∗ ¯ c i ( m ∗ ) flow (and mixing) of the coefficients ¯ c i RG range of validity ✓ α SM ( µ ) ◆ evolution log µ δ ij + γ (0) of eff. Lagrangian ¯ c i ( µ ) = c j ( m ∗ ) ¯ ij 4 π m ∗ c i ( µ ) ¯ µ Elias-Miró et al. JHEP 1308 (2013) 033; JHEP 1311 (2013) 066 low-energy scale Jenkins et al. JHEP 1310 (2013) 087; JHEP 1401 (2014) 035 (exp’s done here) Alonso et al. JHEP 1404 (2014) 159 • No big hierarchy between and EW scale, 1-loop m ∗ corrections to SMEFT are generally small 15

  16. Do we need to go beyond tree level ? • The bulk of the 1-loop effect (RG running) can be effectively included by setting limits on the value of the coefficients at the low-energy scale • Knowledge of the RG running is however needed when it comes to make assumptions on the coefficients at the scale (ex: to m ∗ simplify the analysis by neglecting some of the operators) 1-loop effects important if: [in setting limits] Some loosely bound coefficients appears in a Ex: in ¯ gg → h c t precisely measured observable at 1-loop level [in constraining physics at ] m ∗ A larger coefficient renormalizes a smaller one (for a given power counting). RG effects can be sizeable if UV dynamics is strongly coupled 16

  17. RG evolution of coefficients • In case of strong dynamics, leading effects come from loops of composite particles (i.e. Higgs, top quarks, ...) Examples: ig � ig µ ν ( H † σ i ← → ∂ ν B µ ν ( H † ← → 1. Running of D ν W i D µ H ) + D µ H ) O W + B = ¯ c W + B 2 m 2 2 m 2 W W ✓ µ ◆ c W + B ( m ∗ ) − 1 α 2 ¯ c W + B ( µ ) = ¯ 4 π log c H ( m ∗ ) ¯ 6 m ∗ ¯ c H c W ( m ∗ ) , c B ( m ∗ ) ∼ m 2 W ¯ m 2 g 2 ✓ m ∗ ◆ ∆ ¯ ∗ c W + B ∗ 16 π 2 log ∼ c H ( m ∗ ) ∼ v 2 g 2 = m 2 g 2 ¯ c W + B µ W ¯ ∗ ∗ m 2 m 2 g 2 ∗ ∗ 1-loop correction can be large if the UV dynamics is strongly-interacting ( large) g ∗ 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend