effect of inhomogeneous disorder on the superheating
play

Effect of Inhomogeneous Disorder on the Superheating Field of SRF - PowerPoint PPT Presentation

SRF2019, Dresden, July 4, 2019 Effect of Inhomogeneous Disorder on the Superheating Field of SRF Cavities James A. Sauls Department of Physics Center for Applied Physics & Superconducting Technologies Northwestern University & Fermilab


  1. SRF2019, Dresden, July 4, 2019 Effect of Inhomogeneous Disorder on the Superheating Field of SRF Cavities James A. Sauls Department of Physics Center for Applied Physics & Superconducting Technologies Northwestern University & Fermilab • Wave Ngampruetikorn • Mehdi Zarea • Fermilab Collaborators: Anna Grassellino, Mattia Checchin, Martina Martinello, Sam Posen, Alex Romanenko NSF-PHY 01734332

  2. V. Chandrasekhar W. Halperin J. Ketterson J. Koch D. Seidman N. Stern Anna Grassellino Mattia Checchin Martina Martinello Sam Posen Alex Romanenko

  3. Electrodynamics of Superconductor-Vacuum Interfaces ◮ Program: First-Principles + Materials Inputs: Vacuum Nb Current Response & Local EM Fields for ↔ R J ( q , ω ) = − 1 q � ( q , ω ; � A ) · � A ( q , ω ) K Superconducting-Vacuum Interfaces c

  4. Electrodynamics of Superconductor-Vacuum Interfaces ◮ Program: First-Principles + Materials Inputs: Vacuum Nb Current Response & Local EM Fields for ↔ R J ( q , ω ) = − 1 q � ( q , ω ; � A ) · � A ( q , ω ) K Superconducting-Vacuum Interfaces c ◮ Material Inputs: ◮ Fermi Surfaces - DFT & dHvA ◮ Pairing/Decoherence via Electron-Phonon Coupling

  5. Electrodynamics of Superconductor-Vacuum Interfaces ◮ Program: First-Principles + Materials Inputs: Vacuum Nb Current Response & Local EM Fields for ↔ R J ( q , ω ) = − 1 q � ( q , ω ; � A ) · � A ( q , ω ) K Superconducting-Vacuum Interfaces c ◮ Material Inputs: ◮ Fermi Surfaces - DFT & dHvA ◮ Pairing/Decoherence via Electron-Phonon Coupling ◮ Impurity & Structural Disorder ◮ Surface Scattering: S surf ( p , p ′ ) ◮ surface structure factor ◮ mesoscopic roughness � backscattering � Andreev scattering � sub-gap dissipation

  6. Electrodynamics of Superconductor-Vacuum Interfaces ◮ Program: First-Principles + Materials Inputs: Vacuum Nb Current Response & Local EM Fields for ↔ R J ( q , ω ) = − 1 q � ( q , ω ; � A ) · � A ( q , ω ) K Superconducting-Vacuum Interfaces c ◮ Material Inputs: ◮ Theoretical & Analytical Tools ◮ Fermi Surfaces - DFT & dHvA ◮ Migdal-Eliashberg: electron-phonon ◮ Pairing/Decoherence via ◮ Asymptotic Expansions: Electron-Phonon Coupling k B T c / E f , ¯ h / τ E f , ¯ h / p f ξ , ¯ h ω / E f ... ◮ Impurity & Structural Disorder ◮ Surface Scattering: S surf ( p , p ′ ) ◮ surface structure factor ◮ mesoscopic roughness ◮ Selection Rules & Scattering Theory � backscattering � Andreev scattering ◮ Keldysh Transport Equations � sub-gap dissipation

  7. Electrodynamics of Superconductor-Vacuum Interfaces ◮ Program: First-Principles + Materials Inputs: Vacuum Nb Current Response & Local EM Fields for ↔ R J ( q , ω ) = − 1 q � ( q , ω ; � A ) · � A ( q , ω ) K Superconducting-Vacuum Interfaces c ◮ Material Inputs: ◮ Theoretical & Analytical Tools ◮ Fermi Surfaces - DFT & dHvA ◮ Migdal-Eliashberg: electron-phonon ◮ Pairing/Decoherence via ◮ Asymptotic Expansions: Electron-Phonon Coupling k B T c / E f , ¯ h / τ E f , ¯ h / p f ξ , ¯ h ω / E f ... ◮ Impurity & Structural Disorder ◮ Surface Scattering: S surf ( p , p ′ ) ◮ surface structure factor ◮ mesoscopic roughness ◮ Selection Rules & Scattering Theory � backscattering � Andreev scattering ◮ Keldysh Transport Equations � sub-gap dissipation ◮ Developing Methods & Codes to Compute the Nonlinear A.C. Surface Impedance ◮ Nonequilibrium Quasiparticle, Cooper Pair & Vortex Dynamics D. Rainer & J. A. Sauls, Strong-Coupling Theory of Superconductivity, World Scientific (1995); arXiv:1809.05264

  8. Electronic band structure of Niobium DFT Calculation of the Electronic Band Strucuture 60 Ef= 18.1 eV Nb=[Kr] 4 d 4 5 s 1 50 24 bands 40 E[eV] Fermi Energy = 18.1 eV 30 20 2 bands cross the Fermi energy 10 G H G P N ◮ P . Giannozzi et al., J. Phys. Cond. Mat. 29 465901 (2017)

  9. Phonons in Niobium 250 Theory - Phonon dispersion Inelastic Neutron Scattering 200 150 h ω [1/cm] 100 - 50 0 G H N G P N – DFT Perturbation Theory • Inelastic Neutron Scattering; ◮ Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P ., Rev. Mod. Phys. 73, 515562 (2001), Phonons and related crystal properties from density-functional perturbation theory ◮ B.M. Powell, et al., Phonon properties of niobium ..., Can. J. Phys. 55, 1601 (1977)

  10. Electron-Phonon Spectral Function α 2 F ( ω ) α 2 F 1 Exp ◮ Maxium Phonon Frequency: 0 . 8 h ω max = 27 . 0 meV ¯ � ∞ 0 d ω α 2 F ( ω ) 0 . 6 ◮ λ = 2 = 1 . 18 ω ◮ Electron-Electron Repulsion: 0 . 4 µ ∗ = 0 . 30 ◮ Eliashberg Theory: 0 . 2 T c = 9 . 47 K ◮ Tunneling Inversion 0 G. Arnold et al., JLTP 40, 225 (1980). 0 5 10 15 20 25 30 h ω [meV] ¯ ◮ DFT Perturbation theory fails for Nb ? ◮ Inversion of dI / dV from PETS does not yield bulk α 2 F ( ω ) ? ◮ Nb surface has defects that suppress the high- ω spectrum ? G. Schierning et al., Phys. Stat. Solidi RRL 9, 431 (2015)

  11. Eliashberg Equations ✂ ˆ D k − k ′ ν ( iω j − iω j ′ ) V k − k ′ ( iω j − iω j ′ ) ✁ ˆ g nm,ν ( k ′ , k ) g mn,ν ( k , k ′ ) + Σ pa n k ( iω j ) = ˆ ˆ G m k ′ ( iω j ′ ) G m k ′ ( iω j ′ ) π T ω j ′ λ ( n k , m k ′ , ω j − ω j ′ ) δ ( ε m k ′ − ε f ) N ( ε F ) ω j ∑ Z n k ( i ω j ) = 1 + � ω 2 j ′ + ∆ 2 m k ′ j ′ m k ′ ( i ω j ′ ) ∆ m k ′ ( i ω j ′ ) π T [ λ ( n k , m k ′ , ω j − ω j ′ ) − µ ∗ N ( ε F ) ∑ Z n k ( i ω j ) ∆ n k ( i ω j ) = � c ] δ ( ε m k ′ − ε f ) ω 2 j ′ + ∆ 2 m k ′ ( i ω j ′ ) m k ′ j ′

  12. Strong coupling superconducting gap ∆ 0 = 1 . 56 meV 1 . 5 1 ∆ [meV] 0 . 5 Eliashberg Theory T c = 9 . 45 K Weak coupling BCS 0 0 2 4 6 8 T [K]

  13. Anisotropy of the Gap and Fermi Velocity speed [ 10 6 m / s ] ∆ [meV] T = 0 . 5 K ◮ Gap Anisotropy: ∆ max = 2 . 54 meV ∆ min = 1 . 38 meV ∆ av = 1 . 56 meV = 1 . 3 × 10 6 m/s = 0 . 2 × 10 6 m/s ◮ Velocity Anisotropy: v max v min f f ◮ Strong Anisotropy of the Fermi Velocity - Impact on Critical Currents?

  14. Theoretical Program ◮ Develop Computational Code & Tools for Electronic Structure of Nb - Phonon Spectra & Density of States - DFT Perturbation Theory - Electron-Phonon Coupling - Eliashberg Theory - Strong-Coupling Superconducting Gap on the Fermi Surface ◮ Incorporate Disorder and Surface Scattering - Constraints from Surface and Materials characterization ⇓ ◮ Develop computational transport theory - charge and heat response under strong EM field conditions at the superconductor-vacuum interface

  15. SRF Performance Goals - What Can Theory Provide? ◮ Push to high Q-factor & Reduce a.c. dissipation up to high E acc ◮ Understand physics of current response at f � GHz at high B s ◮ Push E max acc - processes determining Meissner stability/breakdown ⇓ Materials based theory of Non-Equilibrium Superconductivity under Strong Nonlinear A.C. Conditions

  16. Meissner state is metastable up to the superheating fi eld T T Type-I Type-II T c T c metastable metastable Meissner Meissner Meissner Meissner B B B c B c 1 B c 2 B sh Superheating fi eld (Max Field Gradient)

  17. Superheating field is determined from local critical current • We solve simultaneously surface field superconductor 1. Eilenberger equation - for quasiparticle spectrum B 2. Gap equation Magnetic field B sh - for excitation gap 3. Impurity T-matrix equation x - for the effect of disorder p s Superfluid momentum (Vector potential) 4. Maxwell’s equation - for B -field and current profiles j s / j c Supercurrent density • To obtain superheating field, 1 increase surface field until current reaches critical value 6

  18. Nonlinear D.C. Current Response � � � d ε tanh ε � j s ( x ) = − eN f v f A ( ˆ p , ε , x ) p ˆ 2 T p , ε ; x ) ≡ − 1 ◮ Spectral Function: A ( ˆ π Im G ( ˆ p , ε ; x ) ◮ local impurity self-energies, � Σ imp ( x ) = γ ( x ) � � G � ◮ local superconducting order parameter: ∆ ( x ) ◮ local condensate momentum, p s = ¯ h 2 ∇ r ϑ − e c A ◮ perturbation expansion in ε ∈ { ξ / λ L , ξ / ζ } Propagator for Quasiparticles and Cooper Pairs: τ 3 − ˜ − 1 p , ε , x )=[ ˜ ε ( ε , x ) − v f · p s ( x )] � ∆ ( ε , x )( i σ y � τ 1 ) � � ≡ [ G � τ 3 − F ( i σ y � G ( ˆ τ 1 )] π ∆ ( ε , x ) | 2 − [ ˜ | ˜ ε ( ε , x ) − v f · p s ( x )] 2 ˜ ε ( ε , x ) = ε + γ ( x ) � G ( ˆ ˜ p , ε , x ) � ˆ ∆ ( ε , x ) = ∆ ( x )+ γ ( x ) � F ( ˆ p , ε , x ) � ˆ p p � d ε tanh ε ∆ ( x ) = g 2 T Im � f ( ˆ p , ε , x ) � ˆ p , 2 x p s ( x ) − 4 π e c 2 � ∂ 2 j s [ p s ( x ) , γ ( x )] = 0

  19. Disorder Suppresses Supercurrents ∞ − λ ≡ B sh is affected via 2 mechanisms ➤ more screening current ✗ Lower critical supercurrent ✓ Longer penetration depth ➤ less screening current γ Effective penetration depth Critical current density Impurity scattering rate, γ Impurity scattering rate, γ B sh / B 0 For uniform disorder Current suppression dominates 0.84 Penetration depth dominates Impurity scattering rate, γ 0.80 ◮ F. P .-J. Lin and A. Gurevich, Effect of impurities on the superheating field of type-II superconductors, PRB 85, 054513 (2012). • G. Catelani and J. P . Sethna, The superheating field for superconductors in the high- κ London limit, PRB 78, 224509 (2008).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend