edm measurements with storage rings
play

EDM measurements with storage rings Gerco Onderwater VSI, - PowerPoint PPT Presentation

EDM measurements with storage rings Gerco Onderwater VSI, University of Groningen the Netherlands Solvay Workshop 'Beyond the Standard model with Neutrinos and Nuclear Physics' 2017 Outline Motivation EDM landscape Current


  1. EDM measurements – with storage rings – Gerco Onderwater VSI, University of Groningen the Netherlands Solvay Workshop 'Beyond the Standard model with Neutrinos and Nuclear Physics' 2017

  2. Outline ► Motivation ► EDM landscape ► Current & future limits ► Impact on & of experiments ► Summary & outlook Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  3. Motivation Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  4. CP/T Violation Direct measurements K, B, D Cosmology (WMAP) ≠ Cosmological matter-antimatter asymmetry explainable with e.g. Sakharov conditions ► Baryon number violation ► C & CP violation δ CKM from K- and B-physics ► Thermal non-equilibrium d J d J Precision Searches T P ► Correlations in β-decay ► Electric dipole moments J d SM predicts EMDs beyond experimental reach ↳ EDMs are sensitive probe for new physics Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  5. EDM limits muon First non-zero EDM is a major discovery!!! Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  6. From theory to observable ... and back SM Picture from K. Jungmann Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  7. Current EDM limits Limit [ e ∙ cm] 90%CL System 2.9x10 -26 n UCN 199 Hg 6.3x10 -30 vapor ↳ p 2.0x10 -25 1.2x10 -26 ↳ n Assuming all others zero ↳ e 6.0x10 -28 TlF 5.5x10 -23 molecular beam ↳ p 1.2x10 -22 ↳ e 6.7x10 -25 129 Xe 5.5x10 -27 maser (adj. χ² =1.35) 205 Tl 9.4x10 -25 atomic beam ↳ e 1.6x10 -27 YbF ??? molecular beam ↳ e 1.1x10 -27 1.8x10 -19 rest frame E-field μ D ~10 -15 Deuterium 1S-2S Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  8. Why probe (light) nuclei? Nuclear EDMs from constituents and CPV NN-interaction d nucl = d n ⊕ d p ⊕ d  NN n, p, 2 H , 3 H, 3 He, … , 129 Xe, ..., 199 Hg, ... Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  9. CPV one boson exchange Liu, Timmermans, et al. EDM operator long range ↓ one-pion exchange ► EDM in terms of P-odd/T-odd NN interaction: dominates d nucl = g  NN [ a 0 g CP ] [][][] I = 0  a 1 g CP I = 1  a 2 g CP I = 2 ~14 nuclear structure ► Schiff moment in terms of P-odd/T-odd NN interaction: S nucl = g  NN [ a 0 g CP I = 2 ] I = 0  a 1 g CP I = 1  a 2 g CP d atom = S S nucl  e d e  k T C T  k S C S  atomic structure diamagnetic Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  10. Complementarity ► Coefficients for light nuclei & heavy atoms g π NN a 0 g π NN a 1 g π NN a 2 Liu & Timmermans 2004 Stetcu et al. 2008 n 0.14 0.00 -0.14 Ban et al. 2010 Ginges & Flambaum 2004 p -0.05 0.03 0.14 atoms nuclei Dzuba et al. 2002 D 0.09 0.23 0.00 Dzuba et al. 2009 3 He 0.34 0.32 0.38 129 Xe(*) 6x10 -5 6x10 -5 12x10 -5 (*) Use Schiff moments : d( 129 Xe) = +0.38x10 -17 (S/ e ∙fm 3 ) e ∙cm 199 Hg(*) -21x10 -5 11x10 -5 -22x10 -5 d( 199 Hg) = -2.6x10 -17 (S/ e ∙fm 3 ) e ∙cm d( 225 Ra) = -8.8x10 -17 (S/ e ∙fm 3 ) e ∙cm 225 Ra(*) -0.06 -0.12 0.11 p d He Xe Hg Ra n 152 75 93 108 89 134 p 86 60 46 110 56 a ,  ∡ pairwise  b  d 45 58 85 140 ~orthogonal! He 16 128 100 Xe 133 85 Hg 116 Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  11. Looking (a little) deeper _ d/θ [ e ∙zm] ► QCD CPV : n 3780 _ g 0 ≈ 0.027 θ g 1 = g 2 = 0 p -1350 D 2430 3 He 9180 ► quark - chromo-EDMs: 129 Xe(*) 1.6 199 Hg(*) -5.7 ~ ~ ~ ~ g 0 ≈ 4 (d u +d d )g 1 ≈ 20(d u -d d ) g 2 = 0 225 Ra(*) -1620 ~ ~ d/d d [ e ∙ fm] d/d u [ e ∙ fm] n 0.56 0.56 p -0.80 0.40 Neutron ~orthogonal D -4.2 5.0 to ~everything Reason : a 1 = 0 3 He -5.0 7.8 Others : |a 0 | ~ |a 1 | 129 Xe(*) -1.0x10 -3 1.4x10 -3 199 Hg(*) -3.0x10 -3 1.4x10 -3 225 Ra(*) 2.2 -2.6 See refs. prev. page Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  12. Limit on g 0,1,2 ►Obtain g 0,1,2 limits from best EDM limits: n , 129 Xe & 199 Hg ►Assuming no further constraints, g 's are of the order of 10 –10 (and of course strongly correlated) ►Resulting EDMs limits for p , D , 3 He of the order of 10 –23 e ·cm ►This is dominated by the “poor” Xe limit Enormous window to have impact already with precursor experiments; p, D & 3 He all good! Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  13. Just measure any one! Rob Timmermans Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  14. Generic EDM experiment 1. Prepare spin polarized ensemble 2. Interaction with electric field 3. Measure spin evolution Ω d 〈 J 〉 E  ×〈  =    B  d  J 〉 Example: dt d = 10 -26 e ∙ cm E = 100 kV/cm J = ½ Ω = 150 μ Hz ( Δ B ~ 5pT) Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  15. Sensitivity General expression for the uncertainty of an EDM experiment N : number of particles in full experiment 1 P : initial polarization of sample  d ∝ A : analyzing power of polarimeter P E  N T A E : electric field strength in particle rest frame T : characteristic time of single measurement Work on: ► Strong source ► High polarization ► Efficient polarimeter ► High electric field strength ► Spin coherence, efficient storage Equally important: understand systematic effects Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  16. Charged particles in an electric field Bare nuclei T ~  2mL Charged particle accelerate and qE ~ ns escape due to electric field Atomic nuclei − 7 d D Charged constituent of a neutral d 2 H ~ 10 system rearrange themselves to balance forces Established techniques inadequate for charged particles Solution : store relativistic particles in magnetic field EDM interacts with motional electric field Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  17. Fast charged particles in a magnetic field d ⃗ S d ⃗ p d × [ ⃗ B ] dt = ⃗ v ×⃗ v ×⃗ dt = q ⃗ B c m = ⃗ ⃗ v ×⃗ E B can be very large (GV/m) Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  18. Spins in an electromagnetic field B   a − m [ a  B  ] 2 − 1   E  = e 1    v ×  v × E   2  magnetic moment anomaly EDM B=0, E r , 1/( γ² -1)=a E=0, B=B y electrostatic parasitic ω = √ a 2 +(ηβ) 2 / 4 B (1) (1) ⟨ω η ⟩=η E / 2 ω η = ^ ω× ^ (2) ^ (2) ^ E B =ηβ/ 2 a E r ≈aBcβγ² E z ≈Ecos(Ωt) resonance frozens spin ω =ηβ B / 2 (1) (1) ⟨ ω η ⟩=ηΔβ B / 4 ω× ^ ω η × ^ (2) ^ ⟨ ^ B = 1 (2) B ⟩= 1 Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  19. Spins in an electromagnetic field B   a − m [ a  B  ] 2 − 1   E  = e 1    v ×  v × E   2  magnetic moment anomaly EDM S z electrostatic parasitic S y x1,000,000 S x resonance frozens spin ω η In all cases : EDM in S y , MDM in S x,z Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  20. Frozen spin sensitivity = E  v × B = a  1 E 2 a  particle μ/μ N a ξγ² Additional requirements μ -8.891 0.001166 858 ► Polarizability n -1.913 -2.910 – ► Polarimetry p 2.793 1.793 1.56 ► Lifetime ► Intensity D 0.857 -0.143 -5.99 ► Competitive 3 H 2.979 7.918 1.13 3 He -2.128 -4.184 0.76 Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  21. Experiments In Preparation Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  22. Parasitic : muon g-2 @ FNAL FNAL E969: The New (g-2) Experiment: Measure the Muon Anomalous Magnetic Moment to 0.14 ppm Precision Design: ► p = 3.1GeV/ c ► B = 1.45T, ► R = 7m Estimated EDM Sensitivity around 10 –21 e∙cm two orders below current limit Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  23. Ultra-cold muons @ J-PARC K. Ishida, NuFact'17 Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  24. Recent achievements & activities Spiral Injection Scheme for η injection ≥ 80% (vs. 3.5%) NIMA 832, 51 (2016) High-Acceptance Muon Re-Acceleration Phys. Rev. Accel. Beams 19, 040101 (2016) J. Phys.: Conf. Ser. 874 012055 (2017) Muonium Production @ 20% of 10 6 /s Prog. Theor. Exp. Phys. 091C01 (2014) Progress in many essential areas Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  25. Status K. Ishida, NuFact'17 Goal: 10 –21 e∙cm Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

  26. JEDI : Jülich EDM Investigations Cooler-Synchrotron COSY @ FZJ Polarized Protons & Deuterons @ 0.3 – 3.7 GeV/ c Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend