ecritures de nombres en base r eelle fractals et pavages
play

Ecritures de nombres en base r eelle, fractals et pavages - PowerPoint PPT Presentation

Ecritures de nombres en base r eelle, fractals et pavages Wolfgang Steiner LIAFA, CNRS, Universit e Paris 7 26 octobre 2009 RAIM09, Lyon Digital expansions in base Let 2 be an integer. The -expansion (binary, ternary,


  1. ´ Ecritures de nombres en base r´ eelle, fractals et pavages Wolfgang Steiner LIAFA, CNRS, Universit´ e Paris 7 26 octobre 2009 RAIM’09, Lyon

  2. Digital expansions in base β Let β ≥ 2 be an integer. The β -expansion (binary, ternary, decimal, . . . ) of x ∈ [0 , 1) is given by the β -transformation T β : [0 , 1) → [0 , 1) , x �→ T β ( x ) = β x − ⌊ β x ⌋ , β = 2 β = 10 where ⌊ y ⌋ = max { n ∈ Z | n ≤ y } .

  3. Digital expansions in base β Let β ≥ 2 be an integer. The β -expansion (binary, ternary, decimal, . . . ) of x ∈ [0 , 1) is given by the β -transformation T β : [0 , 1) → [0 , 1) , x �→ T β ( x ) = β x − ⌊ β x ⌋ , β = 2 β = 10 where ⌊ y ⌋ = max { n ∈ Z | n ≤ y } . We have x = ⌊ β x ⌋ + T β ( x ) β β

  4. Digital expansions in base β Let β ≥ 2 be an integer. The β -expansion (binary, ternary, decimal, . . . ) of x ∈ [0 , 1) is given by the β -transformation T β : [0 , 1) → [0 , 1) , x �→ T β ( x ) = β x − ⌊ β x ⌋ , β = 2 β = 10 where ⌊ y ⌋ = max { n ∈ Z | n ≤ y } . We have T 2 β ( x ) x = ⌊ β x ⌋ + T β ( x ) = ⌊ β x ⌋ + ⌊ β T β ( x ) ⌋ + β 2 β 2 β β β

  5. Digital expansions in base β Let β ≥ 2 be an integer. The β -expansion (binary, ternary, decimal, . . . ) of x ∈ [0 , 1) is given by the β -transformation T β : [0 , 1) → [0 , 1) , x �→ T β ( x ) = β x − ⌊ β x ⌋ , β = 2 β = 10 where ⌊ y ⌋ = max { n ∈ Z | n ≤ y } . We have T 2 � ∞ β ( x ) x = ⌊ β x ⌋ + T β ( x ) = ⌊ β x ⌋ + ⌊ β T β ( x ) ⌋ b n + = β 2 β 2 β n β β β n =1 with b n = ⌊ β T n − 1 ( x ) ⌋ ∈ { 0 , 1 , . . . , β − 1 } . Set d β ( x ) = b 1 b 2 · · · . β

  6. Digital expansions in base β Let β > 1 be a real number. The (greedy) β -expansion of x ∈ [0 , 1) is given by the β -transformation T β : [0 , 1) → [0 , 1) , x �→ T β ( x ) = β x − ⌊ β x ⌋ , √ β = (1 + 5) / 2 β = 2 β = 10 where ⌊ y ⌋ = max { n ∈ Z | n ≤ y } . We have T 2 � ∞ β ( x ) + ⌊ β T β ( x ) ⌋ x = ⌊ β x ⌋ + T β ( x ) = ⌊ β x ⌋ b n + = β 2 β 2 β n β β β n =1 with b n = ⌊ β T n − 1 ( x ) ⌋ ∈ { 0 , 1 , . . . , ⌈ β ⌉ − 1 } . Set d β ( x ) = b 1 b 2 · · · . β

  7. Admissible sequences The infinite expansion of 1 in base β is 1 = � ∞ n =1 a n β − n , where � � β � T n − 1 − 1 is given by the transformation a n = (1) β � � T β : (0 , 1] → (0 , 1] , x �→ � � T β ( x ) = β x − ⌈ β x ⌉ − 1 and ⌈ y ⌉ = min { n ∈ Z | n ≥ y } . Theorem (Parry 1960) We have b 1 b 2 · · · = d β ( x ) for some x ∈ [0 , 1) if and only if b n ∈ N and b n b n +1 · · · < lex a 1 a 2 · · · ∀ n ≥ 1 . Such a sequence b 1 b 2 · · · is called β -admissible. Examples β ∈ N : a 1 a 2 · · · = ( β − 1) ω , every sequence in { 0 , 1 , . . . , β − 1 } ω not terminating by ( β − 1) ω is β -admissible √ 5) / 2: a 1 a 2 · · · = (1 0) ω , every sequence in { 0 , 1 } ω without 1 1 β = (1 + and not terminating by (1 0) ω is β -admissible

  8. Periodic β -expansions for Pisot numbers β Pisot number: algebraic integer β > 1 with | α | < 1 for every Galois conjugate α � = β ; in particular every integer β ≥ 2 If β ≥ 2 is an integer, then d β ( x ) is eventually periodic if and only if x ∈ Q ∩ [0 , 1), d β ( x ) is purely periodic if and only if the denominator of x is coprime with β .

  9. Periodic β -expansions for Pisot numbers β Pisot number: algebraic integer β > 1 with | α | < 1 for every Galois conjugate α � = β ; in particular every integer β ≥ 2 If β ≥ 2 is an integer, then d β ( x ) is eventually periodic if and only if x ∈ Q ∩ [0 , 1), d β ( x ) is purely periodic if and only if the denominator of x is coprime with β . Theorem (Schmidt 1980) If β is Pisot, d β ( x ) is eventually periodic iff x ∈ Q ( β ) ∩ [0 , 1) . If d β ( x ) is eventually periodic for every x ∈ Q ∩ [0 , 1) , then β is Pisot or Salem ( | α | ≤ 1 for every Galois conjugate α � = β ).

  10. Periodic β -expansions for Pisot numbers β Pisot number: algebraic integer β > 1 with | α | < 1 for every Galois conjugate α � = β ; in particular every integer β ≥ 2 If β ≥ 2 is an integer, then d β ( x ) is eventually periodic if and only if x ∈ Q ∩ [0 , 1), d β ( x ) is purely periodic if and only if the denominator of x is coprime with β . Theorem (Schmidt 1980) If β is Pisot, d β ( x ) is eventually periodic iff x ∈ Q ( β ) ∩ [0 , 1) . If d β ( x ) is eventually periodic for every x ∈ Q ∩ [0 , 1) , then β is Pisot or Salem ( | α | ≤ 1 for every Galois conjugate α � = β ). If β 2 − n β − 1 = 0 for some n ∈ Z , n ≥ 1 , then d β ( x ) is purely periodic for every x ∈ Q ∩ [0 , 1) . Lemma (Akiyama 1998) If β has a positive Galois conjugate (in particular if β 2 − n β + 1 = 0 ), then d β ( x ) is not purely periodic for any x ∈ Q ∩ (0 , 1) .

  11. Natural extension of T β for Pisot units β Let β be a Pisot number, M β a companion matrix to the minimal polynomial X d − c 1 X d − 1 − c 2 X d − 2 − · · · − c d ∈ Z [ X ] of β ,   · · · · · · c 1 c 2 c d   1 0 · · · · · · 0     . ... ... .   M β = 0 . .    . .  ... ... ... . .   . . · · · 0 0 1 0 M β is expanding by the factor β on E β = R ( β d − 1 , . . . , β, 1) t , contracting on a hyperplane H of R d (spanned by the eigenvectors corresponding to the conjugates of β ). Let π be the projection on E β along H and e 1 = (1 , 0 , . . . , 0) t = e β − e H with e β = π ( e 1 ) ∈ E β , e H ∈ H .

  12. Natural extension of T β for Pisot units β Let e 1 = e β − e H , � � S β = ( b n ) n ∈ Z | b n b n +1 · · · is β -admissible ∀ n ∈ Z , 0 � ∞ � b n M − n ψ : S β → R d , ( b n ) n ∈ Z �→ b n β − n e β + , β e H n = −∞ n =1 � �� � � �� � ∈ [0 , 1) ∈ H � T β : X β = ψ ( S β ) → X β , x �→ M β x − b 1 e 1 . For x = x e β + y , x ∈ [0 , 1), y ∈ H , we have � T β ( x e β + y ) = ( β x − b 1 ) e β + M β y + b 1 e H , � �� � T β ( x ) thus � T β ◦ ψ = ψ ◦ σ , where σ is the left-shift, and π ◦ � T β = T β ◦ π . If β is a Pisot unit ( | det M β | = | c d | = 1), then � T β is bijective except on a set of measure 0, ( � T β , X β ) is a natural extension of ( T β , [0 , 1)). T β is a toral automorphism since � � T β ( x ) ≡ M β x (mod Z d ).

  13. Natural extensions for quadratic Pisot units β e 2 e 2 � T β ( X β, 1 ) β 2 = β + 1 e H e β e H e β β ≈ 1 . 618 X β, 0 X β, 1 � T β ( X β, 0 ) (golden mean) e 1 e 1 � T β ( X β, 2 ) e 2 e 2 β 2 = 3 β − 1 � T β ( X β, 1 ) X β, 1 X β, 2 β ≈ 2 . 618 X β, 0 e H e H (square of the e β � e β T β ( X β, 0 ) golden mean) e 1 e 1 �� �� , � X β, k = ψ ( b n ) n ∈ Z ∈ S β | b 1 = k T ( X β, k ) = M β X β, k − k e 1

  14. Natural extensions for cubic Pisot units β β 3 = β 2 + β + 1, β ≈ 1 . 8393 β 3 = β + 1, β ≈ 1 . 3247 (Tribonacci number) (smallest Pisot number) e 2 e 2 e β e β e 1 e 3 e 1 e 3

  15. Shape of X β Since X β = ψ ( S β ) with � � S β = ( b n ) n ∈ Z | b n b n +1 · · · is β -admissible ∀ n ∈ Z , 0 � ∞ � ψ : S β → R d , ( b n ) n ∈ Z �→ b n β − n e β + b n M − n β e H , n =1 n = −∞ we have � � � X β = x e β + D β ( x ) , x ∈ [0 , 1) where � � � 0 � � � b n M − n D β ( x ) = � ( b n ) n ∈ Z ∈ S β , b 1 b 2 · · · = d β ( x ) β e H . n = −∞ Lemma �� � T n If β is a Pisot number, then V β = β (1) | n ≥ 0 is a finite set. We have D β ( x ) ⊇ D β ( y ) if 0 ≤ x ≤ y < 1 , with D β ( x ) = D β ( y ) if � � and only if [ x , y ) ∩ V β = ∅ , hence # D β ( x ) | x ∈ [0 , 1) = # V β . D β ( x ) is compact for every x ∈ [0 , 1) .

  16. Determining digits in d β ( x ) Let β be a Pisot unit, x ∈ [0 , 1) and d β ( x ) = b 1 b 2 · · · . We have b n = k if and only if � T n − 1 ( x e β ) ∈ X β, k . Note that β x β n − 1 e β = M n − 1 ( x e β ) ≡ � T n − 1 (mod Z d ) , ( x e β ) β β thus x β n − 1 e β ∈ X β, k (mod Z d ) if b n = k . Conjecture If β is a Pisot unit, then the intersection of X β, k and X β,ℓ mod Z d has Lebesgue measure zero for every ℓ � = k.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend