large and small g al sums
play

Large and small G al sums Nombres premiers, d eterminisme et - PowerPoint PPT Presentation

Large and small G al sums Nombres premiers, d eterminisme et pseudoal ea CIRM, 4-8 novembre 2019 8/11/2019 G erald Tenenbaum Institut Elie Cartan Universit e de Lorraine BP 70239 54506 Vanduvre-l` es-Nancy Cedex France


  1. Large and small G´ al sums Nombres premiers, d´ eterminisme et pseudoal´ ea CIRM, 4-8 novembre 2019 8/11/2019 G´ erald Tenenbaum Institut ´ Elie Cartan Universit´ e de Lorraine BP 70239 54506 Vandœuvre-l` es-Nancy Cedex France gerald.tenenbaum@univ-lorraine.fr

  2. – 1 – 1. G´ al sums

  3. – 1 – 1. G´ al sums M ⊂ N ∗ , | M | < ∞ . G´ al sums: ( m, n ) α � S α ( M ) := ( α > 0) , [ m, n ] α m,n ∈ M

  4. – 1 – 1. G´ al sums M ⊂ N ∗ , | M | < ∞ . G´ al sums: ( m, n ) α � S α ( M ) := ( α > 0) , [ m, n ] α m,n ∈ M where ( m, n ) (resp. [ m, n ]) denotes the gcd (resp. the lcm) of m and n .

  5. – 1 – 1. G´ al sums M ⊂ N ∗ , | M | < ∞ . G´ al sums: ( m, n ) α � S α ( M ) := ( α > 0) , [ m, n ] α m,n ∈ M where ( m, n ) (resp. [ m, n ]) denotes the gcd (resp. the lcm) of m and n . S 1 ( M ) /N ≪ (log 2 N ) 2 . Koksma’s conjecture (1930’s): Γ 1 ( N ) := sup | M | = N

  6. – 1 – 1. G´ al sums M ⊂ N ∗ , | M | < ∞ . G´ al sums: ( m, n ) α � S α ( M ) := ( α > 0) , [ m, n ] α m,n ∈ M where ( m, n ) (resp. [ m, n ]) denotes the gcd (resp. the lcm) of m and n . S 1 ( M ) /N ≪ (log 2 N ) 2 . Koksma’s conjecture (1930’s): Γ 1 ( N ) := sup | M | = N Key point : no bound on the size of m ∈ M , only on the size of | M | .

  7. – 1 – 1. G´ al sums M ⊂ N ∗ , | M | < ∞ . G´ al sums: ( m, n ) α � S α ( M ) := ( α > 0) , [ m, n ] α m,n ∈ M where ( m, n ) (resp. [ m, n ]) denotes the gcd (resp. the lcm) of m and n . S 1 ( M ) /N ≪ (log 2 N ) 2 . Koksma’s conjecture (1930’s): Γ 1 ( N ) := sup | M | = N Key point : no bound on the size of m ∈ M , only on the size of | M | . Erd˝ os (1947) : proposed a prize at the Amsterdam Math. Soc.:

  8. – 1 – 1. G´ al sums M ⊂ N ∗ , | M | < ∞ . G´ al sums: ( m, n ) α � S α ( M ) := ( α > 0) , [ m, n ] α m,n ∈ M where ( m, n ) (resp. [ m, n ]) denotes the gcd (resp. the lcm) of m and n . S 1 ( M ) /N ≪ (log 2 N ) 2 . Koksma’s conjecture (1930’s): Γ 1 ( N ) := sup | M | = N Key point : no bound on the size of m ∈ M , only on the size of | M | . Erd˝ os (1947) : proposed a prize at the Amsterdam Math. Soc.: Proved by G´ al (1949).

  9. – 1 – 1. G´ al sums M ⊂ N ∗ , | M | < ∞ . G´ al sums: ( m, n ) α � S α ( M ) := ( α > 0) , [ m, n ] α m,n ∈ M where ( m, n ) (resp. [ m, n ]) denotes the gcd (resp. the lcm) of m and n . S 1 ( M ) /N ≪ (log 2 N ) 2 . Koksma’s conjecture (1930’s): Γ 1 ( N ) := sup | M | = N Key point : no bound on the size of m ∈ M , only on the size of | M | . Erd˝ os (1947) : proposed a prize at the Amsterdam Math. Soc.: Proved by G´ al (1949). l (2017): Γ 1 ( N ) ∼ 6e 2 γ π 2 (log 2 N ) 2 Lewko & Radziwi� l� ( N → ∞ ) .

  10. – 1 – 1. G´ al sums M ⊂ N ∗ , | M | < ∞ . G´ al sums: ( m, n ) α � S α ( M ) := ( α > 0) , [ m, n ] α m,n ∈ M where ( m, n ) (resp. [ m, n ]) denotes the gcd (resp. the lcm) of m and n . S 1 ( M ) /N ≪ (log 2 N ) 2 . Koksma’s conjecture (1930’s): Γ 1 ( N ) := sup | M | = N Key point : no bound on the size of m ∈ M , only on the size of | M | . Erd˝ os (1947) : proposed a prize at the Amsterdam Math. Soc.: Proved by G´ al (1949). l (2017): Γ 1 ( N ) ∼ 6e 2 γ π 2 (log 2 N ) 2 Lewko & Radziwi� l� ( N → ∞ ) . Applications: distribution modulo 1 of sequences { n k ϑ } ∞ k =1 for almost all ϑ : � 1 2 ( m, n ) α � � � � 1 ( c ∈ C | M | ) . � � c m B ( mx ) d x = [ m, n ] α c m c n � � 12 � � 0 m ∈ M m,n ∈ M

  11. – 2 – 2. Bounding large G´ al sums

  12. – 2 – 2. Bounding large G´ al sums Recent works: α = 1 2 — applications to zeta function and character sums.

  13. – 2 – 2. Bounding large G´ al sums Recent works: α = 1 2 — applications to zeta function and character sums. Resonance method.

  14. – 2 – 2. Bounding large G´ al sums Recent works: α = 1 2 — applications to zeta function and character sums. Resonance method. Improving Bondarenko and Seip (’15, ’17): √ (log N log 3 N ) / log 2 N . Theorem 1 (La Bret` eche-T. 2018). Let L ( N ) := e √ S ( M ) = L ( N ) 2 2+ o (1) . Then Γ 1 / 2 ( N ) := max | M | | M | = N

  15. – 2 – 2. Bounding large G´ al sums Recent works: α = 1 2 — applications to zeta function and character sums. Resonance method. Improving Bondarenko and Seip (’15, ’17): √ (log N log 3 N ) / log 2 N . Theorem 1 (La Bret` eche-T. 2018). Let L ( N ) := e √ S ( M ) = L ( N ) 2 2+ o (1) . Then Γ 1 / 2 ( N ) := max | M | | M | = N � � � ( m, n ) � � � The same estimate holds also for Q ( M ) := sup c m c n � . � � [ m, n ] � � c ∈ C N � m,n ∈ M � c � 2 =1

  16. – 2 – 2. Bounding large G´ al sums Recent works: α = 1 2 — applications to zeta function and character sums. Resonance method. Improving Bondarenko and Seip (’15, ’17): √ (log N log 3 N ) / log 2 N . Theorem 1 (La Bret` eche-T. 2018). Let L ( N ) := e √ S ( M ) = L ( N ) 2 2+ o (1) . Then Γ 1 / 2 ( N ) := max | M | | M | = N � � � ( m, n ) � � � The same estimate holds also for Q ( M ) := sup c m c n � . � � [ m, n ] � � c ∈ C N � m,n ∈ M � c � 2 =1 � n � 1 / 2 � BS consider subsums of G´ al type: S ( M ) := . m m,n ∈ M , n | m

  17. – 2 – 2. Bounding large G´ al sums Recent works: α = 1 2 — applications to zeta function and character sums. Resonance method. Improving Bondarenko and Seip (’15, ’17): √ (log N log 3 N ) / log 2 N . Theorem 1 (La Bret` eche-T. 2018). Let L ( N ) := e √ S ( M ) = L ( N ) 2 2+ o (1) . Then Γ 1 / 2 ( N ) := max | M | | M | = N � � � ( m, n ) � � � The same estimate holds also for Q ( M ) := sup c m c n � . � � [ m, n ] � � c ∈ C N � m,n ∈ M � c � 2 =1 � n � 1 / 2 � BS consider subsums of G´ al type: S ( M ) := . m m,n ∈ M , n | m | M | = N S ( M ) = L ( N ) o (1) while It can be shown (BS 2017, LB-T 2018) that max the norm of the corresponding quadratic form is L ( N ) 1+ o (1) .

  18. – 3 – 3. Applications 3 · 1. Localised maxima of | ζ ( 1 2 + iτ ) |

  19. – 3 – 3. Applications 3 · 1. Localised maxima of | ζ ( 1 2 + iτ ) | � ζ ( 1 � � Z β ( T ) := max 2 + iτ ) (0 � β < 1 , T � 1) � T β � τ � T

  20. – 3 – 3. Applications 3 · 1. Localised maxima of | ζ ( 1 2 + iτ ) | � ζ ( 1 � � Z β ( T ) := max 2 + iτ ) (0 � β < 1 , T � 1) � T β � τ � T √ 2(1 − β )+ o (1) . LB-T (2018): Z β ( T ) � L ( T )

  21. – 3 – 3. Applications 3 · 1. Localised maxima of | ζ ( 1 2 + iτ ) | � ζ ( 1 � � Z β ( T ) := max 2 + iτ ) (0 � β < 1 , T � 1) � T β � τ � T √ 2(1 − β )+ o (1) . LB-T (2018): Z β ( T ) � L ( T ) √ Improvement of Bondarenko and Seip’s exponent by a factor 2.

  22. – 3 – 3. Applications 3 · 1. Localised maxima of | ζ ( 1 2 + iτ ) | � ζ ( 1 � � Z β ( T ) := max 2 + iτ ) (0 � β < 1 , T � 1) � T β � τ � T √ 2(1 − β )+ o (1) . LB-T (2018): Z β ( T ) � L ( T ) √ Improvement of Bondarenko and Seip’s exponent by a factor 2. 3 · 2. Central values of L -functions n � 1 χ ( n ) /n s L ( s, χ ) := � ( χ � = χ 0 , ℜ e ( s ) > 0) .

  23. – 3 – 3. Applications 3 · 1. Localised maxima of | ζ ( 1 2 + iτ ) | � ζ ( 1 � � Z β ( T ) := max 2 + iτ ) (0 � β < 1 , T � 1) � T β � τ � T √ 2(1 − β )+ o (1) . LB-T (2018): Z β ( T ) � L ( T ) √ Improvement of Bondarenko and Seip’s exponent by a factor 2. 3 · 2. Central values of L -functions n � 1 χ ( n ) /n s L ( s, χ ) := � ( χ � = χ 0 , ℜ e ( s ) > 0) . LB-T (2018) : When q is prime and tends to ∞ , � � � log q log 3 q � � L ( q ) 1+ o (1) = exp � L ( 1 � � � � max 2 , χ ) 1 + o (1) . log 2 q χ mod q χ � = χ 0 χ ( − 1)=1 � Improves Soundararajan (2008), Hough (2016), by an extra factor ≍ log 3 q .

  24. – 4 – 3 · 3. Character sums

  25. – 4 – 3 · 3. Character sums � � �� ∆( x, q ) := max χ � = χ 0 n � x χ ( n ) � , � � χ mod q

  26. – 4 – 3 · 3. Character sums � � �� ∆( x, q ) := max χ � = χ 0 n � x χ ( n ) � , � � χ mod q LB-T (2018): When e (log q ) 1 / 2+ ε � x � q/ e (1+ ε ) ω ( q ) , we have ∆( x, q ) ≫ √ x L ( q/x ) √ 2+ o (1) ( q → ∞ ) .

  27. – 4 – 3 · 3. Character sums � � �� ∆( x, q ) := max χ � = χ 0 n � x χ ( n ) � , � � χ mod q LB-T (2018): When e (log q ) 1 / 2+ ε � x � q/ e (1+ ε ) ω ( q ) , we have ∆( x, q ) ≫ √ x L ( q/x ) √ 2+ o (1) ( q → ∞ ) . � In its range, improves Hough’s estimate (2013) by an extra factor log 3 ( q/x ).

  28. – 4 – 3 · 3. Character sums � � �� ∆( x, q ) := max χ � = χ 0 n � x χ ( n ) � , � � χ mod q LB-T (2018): When e (log q ) 1 / 2+ ε � x � q/ e (1+ ε ) ω ( q ) , we have ∆( x, q ) ≫ √ x L ( q/x ) √ 2+ o (1) ( q → ∞ ) . � In its range, improves Hough’s estimate (2013) by an extra factor log 3 ( q/x ). Valid not only for q prime.

  29. – 5 – 4. Small G´ al sums

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend