e
play

E 0 k i ( r k r r t ) r = r = c | r E E 0 e k | B 0 i ( r k r r - PowerPoint PPT Presentation

Thermal Radiation Radiation in thermal equilibrium with its surroundings E 0 k i ( r k r r t ) r = r = c | r E E 0 e k | B 0 i ( r k r r t ) r r r r r B = B 0 e B 0 = 1 k E 0 /c 8.044 L 15 B1 - 0 | 2 1 Time


  1. Thermal Radiation Radiation in thermal equilibrium with its surroundings E 0 k i ( r k · r r − �t ) r = r � = c | r E E 0 e k | B 0 i ( r k · r r − �t ) r r r r r B = B 0 e B 0 = 1 k × E 0 /c 8.044 L 15 B1

  2. - 0 | 2 1 Time average energy density u = E 0 | E 2 - j E = ( cu ) - Time average energy flux 1 k Time average pressure ( ⇒ to - k ) P = u Thermal radiation has a continuous distribution of frequencies. u( ν ,T) Peaks near hν = 3 k B T ( h/k B � 5 × 10 − 11 K-sec) ν 8.044 L 15 B2

  3. Spectral Region ν (Hz) T (K) Thermal Rad. 10 6 1 . 7 × 10 − 5 Radio 10 10 Microwave 0 . 17 cosmic background 10 13 1 . 7 × 10 2 Infrared room temp. 2 × 10 15 8 . 5 × 10 3 Visible sun’s surface 1 10 16 1 . 7 × 10 5 Ultraviolet 10 18 1 . 7 × 10 7 X ray black holes 10 21 1 . 7 × 10 10 γ ray 8.044 L15B3

  4. ENERGY ABSORBED ABSORPTIVITY α ( ν ,T) ENERGY INCIDENT ISOTROPIC ENERGY EMITTED EMISSIVE POWER e ( ν ,T) AREA ISOTROPIC 8.044 L15B4

  5. THERMAL RADIATION: PROPERTIES 2 ENERGY FLUXES, IN AND OUT OF CAVITY B T B CAVITY A T A CAVITY B FILTER: FREQUENCY OR POLARIZATION ASSUME T A = T B AND THERMAL EQUILIBRIUM 8.044 L15B5

  6. CONCLUSIONS: • u ( ν, T ) is independent of shape and wall material • u ( ν, T ) is isotropic • u ( ν, T ) is unpolarized 8.044 L 15 B6

  7. CONSIDER AN OBJECT IN THE CAVITY, IN THERMAL EQUILIBRIUM COMPUTE THE ENERGY FLUX T dA c ∆ t θ n ∆ A 8.044 L15B7

  8. ∆ E = ( E in cylinder) p ( θ, φ ) dθ dφ sin θ 1 = ( u ∆ A cos θ c ∆ t ) dθ dφ 2 2 π π/ 2 cos θ sin θ 2 π 1 = c u ∆ A ∆ t dθ dφ 0 2 0 2 π 1 1 / 4 1 ⇒ energy flux onto dA = 4 c u ( ν, T ) 8.044 L 15 B8

  9. Momentum Flux r = u r Plane wave momentum density 1 k p c | ∆ p | = 2 | p ⇒ | since p ⇒ in = r − r p ⇒ out 8.044 L 15 B9

  10. 2 cos θ | ∆ p | ν = ( E in cylinder) p ( θ, φ ) dθ dφ c 2 π 1 π/ 2 cos 2 θ sin θ dθ = u ( ν, T ) ∆ A ∆ t dφ 0 0 2 π 1 / 3 1 1 = 3 u ( ν, T ) ∆ A ∆ t � u ( ν, T ) dν ⇒ P ( T ) = 1 3 0 8.044 L 15 B10

  11. Apply detailed balance to the object in the cavity. E out = E in 1 c u ( ν, T )) dA e dA = α ( 4 e ( ν, T ) 1 ⇒ = 4 c u ( ν, T ) α ( ν, T ) This ratio has a universal form for all materials. The result is known as KIRCHOFF’S LAW. 8.044 L 15 B11

  12. Black Body Radiation If α ≡ 1 ≡ “Black” Then e ( ν, T ) = 1 4 c u ( ν, T ) OVEN Measure e ( ν, T ) CAVITY AT and obtain u ( ν, T ) T 8.044 L 15 B12

  13. Thermodynamic Approach ∞ u ( T ) ≡ u ( ν, T ) dν 0 Then E ( T, V ) = u ( T ) V 1 P ( T, V ) = 3 u ( T ) 8.044 L 15 B 13

  14. This is enough to allow us to find u ( T ). dE = TdS − PdV ∂E ∂S ∂P � � � � � � = T − P = T − P ∂V ∂V ∂T T T V 1 Tu � ( T ) − 1 = 3 u ( T ) 3 also = u ( T ) u � ( T ) = 4 u ( T ) � T u ( T ) = AT 4 8.044 L 15 B 14

  15. Emissive Power of a Black ( α = 1) Body 4 c u ( T ) = 1 AcT 4 e ( ν, T ) = 1 4 c u ( ν, T ) ⇒ e ( T ) = 1 4 4 e ( T ) ∞ σT This is known as the STEFAN-BOLTZMANN LAW. σ = 56 . 7 × 10 − 9 watts/ m 2 K 4 8.044 L 15 B 15

  16. Statistical Mechanical Approach H ? Single normal mode (plane standing wave) in a rectangular conducting cavity. E x z 0 L r r, t ) = E ( t ) sin( nπz/L ) r E ( r 1 x 0 , 0 ,n,r 1 x r, t ) = ( nπc 2 /L ) − 1 E r ˙ ( t ) cos( nπz/L ) r B ( r 1 y 0 , 0 ,n,r 1 y 8.044 L 15 B 16

  17. 1 - · E - + 1 - · B - Energy density = 1 E 0 E 0 B [ no - r or t average ] µ 2 2   H = V  1 E 0 E 2 ( t ) + 1 1 ( nπc 2 /L ) − 2 E ˙ 2 ( t )  2 2 2 µ 0 V E 0 E 2 ( t ) + ( nπc/L ) − 2 E ˙ 2 ( t ) = 2 2 � Each mode corresponds to a harmonic oscillator. 8.044 L 15 B 17

  18. Count the modes. i�t r E n x ,n y ,n z = | E | r j sin( n x πx/L ) sin( n y πy/L ) sin( n z πz/L ) e The unit polarization vector E j has 2 possible o rthog- onal directions and n i = 1 , 2 , 3 · · · . � 2 E � 2 E πc � � 2 = − c � 2 E = 0 2 E 2 2 2 ( n + n + n ) � x y z �t 2 L 8.044 L 15 B 18

  19. If the radian frequency < ω n z L � 2 2 2 R R = n + n + n = ω x y z πc # modes (freq. < ω ) n y 1 4 = 2 × 8 × 3 πR 3 GRID SPACING 3 1 UNIT n x π L ω 3 = 3 πc 8.044 L 15 B 19

  20. � 3 d # L V � ω 2 ω 2 D ( ω ) = = π = π 2 c 3 dω πc D( ω ) ω 8.044 L 15 B 20

  21. Classical Statistical Mechanics D ( � ) k B T 3 � 2 < E ( � ) > = k B T � u ( �, T ) = < E ( � ) > = π 2 c V ∞ u ( T ) = u ( �, T ) d� = ∞ 0 CLASSICAL u( ω , T) MEASURED ω 8.044 L 15 B2 1

  22. Quantum Statistical Mechanics ¯ h� < E ( � ) > = + ¯ h�/ 2 ¯ h�/kT − 1 e � 3 D ( � ) ¯ h u ( �, T ) = < E ( � ) > = + z. p. term π 2 c 3 ¯ h�/kT − 1 V e du ( �, T ) To find the location of the maximum, set = 0 . d� The maximum occurs at ¯ h�/kT ≈ 2 . 82. 8.044 L 15 B 22

  23. − ¯ hω/ 2 kT (1 − e − ¯ hω/kT ) − 1 Z = Z i Z i = e states i The first factor in the expression for Z i comes from the zero-point energy. F ( V, T ) = − kT ln Z = − kT ln Z i � states i � � = − kT D ( ω ) [ln Z i ] dω 0 8.044 L 15 B 23

  24. � � � − ¯ hω/kT ) F ( V, T ) = − kT D ( ω ) − ln(1 − e dω + · · · 0 kT V � ω 2 ln(1 − e − ¯ hω/kT ) dω = π 2 c 3 0 V � 2 ln(1 − e ( kT ) 4 − x ) dx = x h 3 π 2 c 3 ¯ 0 v- _ − π 4 45 π 2 1 ( kT ) 4 V = − h 3 45 c 3 ¯ 8.044 L 15 B 24

  25. π 2 ∂F 1 � � ( kT ) 4 P = − = h ) 3 ∂V T 45 ( c ¯ π 2 4 ∂F � � k 4 T 3 V S = − = h ) 3 ∂T V 45 ( c ¯ π 2 1 4 1 � � ( kT ) 4 V E = F + TS = + ( · · · ) = − h ) 3 45 45 15 ( c ¯ Note: P = 1 3 E/V = 1 3 u ( T ) independent of V . 8.044 L 15 B 25

  26. NOTE: THE ADIABATIC PATH IS T 3 V=CONSTANT T ADIABATIC T/T 0 = (V/V 0 )- 1 / 3 V 8.044 L15B26

  27. MIT OpenCourseWare http://ocw.mit.edu 8.044 Statistical Physics I Spring 2013 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend