e e 3 jets and event shapes
play

e + e 3 jets and event shapes Classical QCD observable testing - PowerPoint PPT Presentation

e + e 3 jets at NNLO Thomas Gehrmann in collaboration with: A. Gehrmann-De Ridder, E.W.N. Glover, G. Heinrich Universit at Z urich S T A U T R I S I C R E E N V I S N I S U MDCCC XXXIII RADCOR 2007 e + e


  1. e + e − → 3 jets at NNLO Thomas Gehrmann in collaboration with: A. Gehrmann-De Ridder, E.W.N. Glover, G. Heinrich Universit¨ at Z¨ urich S T A U T R I S I C R E E N V I S N I S U MDCCC XXXIII RADCOR 2007 e + e − → 3 jets at NNLO – p.1

  2. e + e − → 3 jets and event shapes Classical QCD observable testing ground for QCD: perturbation theory, power corrections and logarithmic resummation precision measurement of strong coupling constant α s current error on α s from jet observables dominated by theoretical uncertainty: S. Bethke, 2006 α s ( M Z ) = 0 . 121 ± 0 . 001( experiment ) ± 0 . 005( theory ) theoretical uncertainty largely from missing higher orders current status: NLO plus NLL resummation Theoretical description easier than at hadron colliders, since coloured partons only in final state: no initial state emission, no parton distributions new calculational methods first developed for e + e − , then extended to hadronic processes e + e − → 3 jets at NNLO – p.2

  3. e + e − → 3 jets and event shapes Event shape variables assign a number x to a set of final state momenta: { p } i → x E cm =206 GeV 10 7 ALEPH E cm =200 GeV 10 6 E cm =189 GeV e.g. Thrust in e + e − 10 5 1/ � d � /dT E cm =183 GeV 10 4 P n i =1 | � p i · � n | E cm =172 GeV T = max � 10 3 n P n i =1 | � p i | E cm =161 GeV 10 2 E cm =133 GeV limiting values: 10 E cm =91.2 GeV 1 back-to-back (two-jet) limit: T = 1 -1 10 spherical limit: T = 1 / 2 2 ) + NLLA O( � s -2 10 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 T e + e − → 3 jets at NNLO – p.3

  4. e + e − → 3 jets and event shapes Standard Set of LEP Thrust (E. Farhi) n n ! ! X X T = max � | � p i · � n | / | � p i | n DELPHI EEC i =1 i =1 AEEC x µ = 1 Heavy jet mass (L. Clavelli, D. Wyler) JCEF 1-Thr « 2 1 „ X O M 2 i /s = | � p k | C E 2 B Max vis B Sum k ∈ H i ρ H C -parameter: eigenvalues of the tensor (G. Parisi) ρ S ρ D k p β k p α P 1 D 2E0 Θ αβ = k D 2P0 P P k | � p k | k | � p k | D 2P D 2Jade D 2Durham D 2Geneva Jet broadenings (S. Catani, G. Turnock, B. Webber) D 2Cambridge „ X « „ « X B i = | � p k × � n T | / 2 | � p k | w. average : α S (M Z2 ) = 0.1232 ± 0.0116 χ 2 /n df = 71 / 17 ρ eff = 0.635 k ∈ H i k f err = 3.38 B W = max( B 1 , B 2 ) B T = B 1 + B 2 0.06 0.08 0.1 0.12 0.14 0.16 0.18 α S (M Z2 ) 3 j → 2 j transition parameter in Durham algorithm y D 23 S.Catani, Y.L.Dokshitzer, M.Olsson, G.Turnock, B.Webber e + e − → 3 jets at NNLO – p.4

  5. e + e − → 3 jets and event shapes Current status: NLO and NLL NLO calculations of event shapes and 3 j R.K. Ellis, D.A. Ross, A.E. Terrano; Z. Kunszt J. Vermaseren, K.F . Gaemers, S.J. Oldham; L. Clavelli, D. Wyler K. Fabricius, I. Schmitt, G. Kramer, G. Schierholz NLO parton level event generators for 3 j EVENT: Z. Kunszt, P . Nason EERAD: W. Giele, E.W.N. Glover EVENT2: S. Catani, M. Seymour NLO parton level event generators for 4 j MenloParc: L.D. Dixon, A. Signer EERAD2: J. Campbell, M. Cullen, E.W.N. Glover Debrecen: Z. Nagy, Z. Trocsanyi Mercurito: D. Kosower, S. Weinzierl NLL resummation S. Catani, L. Trentadue, G. Turnock, B. Webber Power corrections G. Korchemsky, G. Sterman; Y. Dokshitzer, B.R. Webber e + e − → 3 jets at NNLO – p.5

  6. Ingredients to NNLO e + e − → 3-jet Two-loop matrix elements |M| 2 explicit infrared poles from loop integrals 2-loop , 3 partons L. Garland, N. Glover, A. Koukoutsakis, E. Remiddi, TG (RADCOR 00/02); S. Moch, P . Uwer, S. Weinzierl One-loop matrix elements |M| 2 explicit infrared poles from loop integral and 1-loop , 4 partons implicit infrared poles due to single unresolved radiation Z. Bern, L. Dixon, D. Kosower, S. Weinzierl; J. Campbell, D.J. Miller, E.W.N. Glover Tree level matrix elements |M| 2 implicit infrared poles due to double unresolved radiation tree , 5 partons K. Hagiwara, D. Zeppenfeld; F .A. Berends, W.T. Giele, H. Kuijf; N. Falck, D. Graudenz, G. Kramer Infrared Poles cancel in the sum e + e − → 3 jets at NNLO – p.6

  7. NNLO Infrared Subtraction Structure of NNLO m -jet cross section: Z “ ” d σ R NNLO − d σ S d σ NNLO = NNLO dΦ m +2 Z “ ” d σ V, 1 NNLO − d σ V S, 1 + NNLO dΦ m +1 Z Z Z d σ V, 2 d σ V S, 1 d σ S + NNLO + NNLO + NNLO , dΦ m dΦ m +2 dΦ m +1 d σ S NNLO : real radiation subtraction term for d σ R NNLO d σ V S, 1 NNLO : one-loop virtual subtraction term for d σ V, 1 NNLO d σ V, 2 NNLO : two-loop virtual corrections Each line above is finite numerically and free of infrared ǫ -poles − → numerical programme e + e − → 3 jets at NNLO – p.7

  8. Numerical Implementation Structure of e + e − → 3 jets program: Monte Carlo Histograms Cross section Definition of Observables Phase Space d σ V, 2 NNLO � { p i } 3 { p i } 3 , w w, { C, S, T } d σ V S, 1 3 parton 3 parton + NNLO dΦ X 3 σ 3 j dΦ q ¯ qg ✲ ✲ ✲ → 3 jet channel � d σ S + NNLO dΦ X 4 d σ/ d T ✲ { p i } 4 { p i } 4 , w w, { C, S, T } ⊕ 4 parton 4 parton d σ V, 1 NNLO − d σ V S, 1 dΦ q ¯ qgg ✲ ✲ → 3 jet channel NNLO d σ/ d S ✲ { p i } 5 { p i } 5 , w w, { C, S, T } 5 parton 5 parton d σ/ d C dΦ q ¯ d σ R NNLO − d σ S qggg ✲ ✲ ✲ → 3 jet channel NNLO e + e − → 3 jets at NNLO – p.8

  9. Numerical Implementation Antenna subtraction NLO: M. Cullen, J. Campbell, E.W.N. Glover; D. Kosower; A. Daleo, D. Maitre, TG NNLO: A. Gehrmann-De Ridder, E.W.N. Glover, TG (RADCOR 05) construct subtraction terms from physical 1 → 3 and 1 → 4 matrix elements each antenna function interpolates between all limits associated to one or two unresolved partons integrated subtraction terms cancel infrared pole structure of two-loop matrix element S. Catani; G. Sterman, M.E. Yeomans-Tejeda Checks cancellation of infrared poles in 3-parton and 4-parton channel convergence of subtraction terms towards matrix elements along phase space trajectories distributions in raw phase space variables independence on phase space cut y 0 e + e − → 3 jets at NNLO – p.9

  10. Colour structure at NNLO Decomposition into leading and subleading colour terms " 1 ( N 2 − 1) N 2 A NNLO + B NNLO + d σ NNLO = N 2 C NNLO + NN F D NNLO „ 4 # + N F « E NNLO + N 2 F F NNLO + N F,γ N − N G NNLO N last term: closed quark loop coupling to vector boson ” 2 “P q e q N F,γ = q e 2 P q was found to be O (10 − 4 ) in NLO 4 j final states L.D. Dixon, A. Signer will be negelected here e + e − → 3 jets at NNLO – p.10

  11. Event shapes at NNLO NNLO expression for Thrust 1 d σ “ α s “ α s ” 2 ” (1 − T ) = A ( T ) + ( B ( T ) − 2 A ( T )) σ had d T 2 π 2 π “ α s ” 3 + ( C ( T ) − 2 B ( T ) − 1 . 64 A ( T )) 2 π with LO contribution A ( T ) , NLO contribution B ( T ) 30 300 (1-T) d A (1-T) d B d T d T 20 200 10 100 0 0 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 1-T 1-T e + e − → 3 jets at NNLO – p.11

  12. Event shapes at NNLO Individual colour structures 20000 7500 100 N 2 N 0 5000 0 10000 2500 -100 1/N 2 0 0 -2500 -200 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0 500 6000 N 2 F N F /N 250 4000 (1-T)d C d T -10000 0 2000 N F N -250 0 -20000 -500 -2000 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 1-T 1-T 1-T dominated by leading colour N 2 and N F N sizable contributions from N 0 , N F /N and N 2 F negligible contribution from 1 /N 2 e + e − → 3 jets at NNLO – p.12

  13. Results NNLO thrust distribution 0.5 8000 (1-T) 1/ σ had d σ /d T (1-T) d C NNLO 0.4 NLO 6000 d T LO 0.3 4000 Q = M Z 0.2 α s (M Z ) = 0.1189 2000 0.1 0 0 0.1 0.2 0.3 0.4 0 0 0.1 0.2 0.3 0.4 1-T 1-T NNLO corrections sizable theory error reduced by 30–40 % large 1 − T : need hadronization corrections small 1 − T : two-jet region, need matching onto NLL resummation Work in progress: G. Luisoni, TG mean value � 1 − T � : A = 2 . 101 B = 44 . 98 C = 1095 ± 130 � 1 − T � ( α s = 0 . 1189) = 0 . 0398 + 0 . 0146 + 0 . 0068 e + e − → 3 jets at NNLO – p.13

  14. Results NNLO heavy jet mass and C -parameter heavy jet mass M 2 H /s C -parameter 0.5 0.5 M H 1/ σ had d σ /d M H C 1/ σ had d σ /d C NNLO NNLO 0.4 0.4 NLO NLO LO LO 0.3 0.3 Q = M Z 0.2 0.2 α s (M Z ) = 0.1189 Q = M Z 0.1 0.1 α s (M Z ) = 0.1189 0 0 0 0.1 0.2 0.3 0.4 0 0.2 0.4 0.6 0.8 1 M H C heavy jet mass (closely related to thurst) has very small NNLO corrections NNLO corrections for C large again require matching onto NLL resummation and hadronization corrections Sudakov shoulder in C = 0 . 75 also requires resummation S. Catani, B. Webber e + e − → 3 jets at NNLO – p.14

  15. Results NNLO jet broadenings wide jet boadening B W total jet boadening B T 0.6 0.7 B W 1/ σ had d σ /d B W B T 1/ σ had d σ /d B T NNLO NNLO 0.6 NLO NLO LO 0.5 LO 0.4 0.4 Q = M Z Q = M Z α s (M Z ) = 0.1189 α s (M Z ) = 0.1189 0.3 0.2 0.2 0.1 0 0 0 0.1 0.2 0.3 0 0.1 0.2 0.3 0.4 B W B T relative magnitude of NNLO corrections smaller than for thurst NNLO corrections for B W smaller than for B T again require matching onto NLL resummation and hadronization corrections e + e − → 3 jets at NNLO – p.15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend