dynamic control allocation using constrained qp
play

Dynamic Control Allocation using Constrained QP Ola Hrkegrd - PDF document

Dynamic Control Allocation using Constrained QP Ola Hrkegrd Linkping University S weden How can we utilize actuator redundancy? Ac tuator limits Frequenc y division 1 Control allocation = = M Bu F Bu


  1. Dynamic Control Allocation using Constrained QP Ola Härkegård Linköping University S weden How can we utilize actuator redundancy? � Ac tuator limits � Frequenc y division 1

  2. Control allocation = = M Bu F Bu ≤ ≤ ≤ ≤ u u u u u u Whic h u should we pick? Whic h u should we pick? � System overview v u Feedback Control S ystem r law allocation dynamics x � Direc t CA = v Bu � Daisy chaining ≤ ≤ u u u � Linear prog. � Quadratic prog. 2

  3. Example: v=u 1 +u 2 � Desired total control Virtual control 0.2 0.15 0.1 v 0.05 v 0 0 5 10 15 Time (s) Example: v=u 1 +u 2     1 0 u     1 min � Dynamic allocation     � 0 2 u     2 2 Control signals Control signals 0.2 0.2 0.15 0.15 v, u v, u 0.1 0.1 0.05 0.05 v v u 1 u 1 u 2 u 2 0 0 0 5 10 15 0 5 10 15 Time (s) Time (s) 3

  4. Why dynamic allocation? � S pecify frequency range for each actuator. � Improve c losed loop behaviour. How? � S olve ( ( ) ( ) ) ( ( ) ( ) ) 2 2 − + − − min W u t u t W u t u t T ( ) 1 s 2 2 2 u t ( ) ( ) = Bu t v t ( ) ( ) ( ) ≤ ≤ u t u t u t � W 1 , W 2 → frequency charac teristic s � u s → steady state distribution 4

  5. Properties � Without actuator constraints: ( ( ) ( ) ) ( ( ) ( ) ) 2 2 − + − − min W u t u t W u t u t T ( ) 1 s 2 2 2 u t ( ) ( ) = Bu t v t ( ) ( ) ( ) ( ) = + − + � S olution: u t Eu t Fu t T Gv t s Stability ( ) ( ) ( ) ( ) = + − + � Filter: u t Eu t Fu t T Gv t s � If W 1 is nonsingular then ( ) ≤ λ < 0 F 1 × × × × (asymptotically stable) 5

  6. Steady state ( ( ) ( ) ) ( ( ) ( ) ) 2 2 − + − − min W u t u t W u t u t T ( ) 1 s 2 2 2 u t � � � � � � � ( ) ( ) = = 0 Bu t v t � If Bu s (t)=v(t) then ( ) ( ) → → ∞ u t u t as t s Example: v=u 1 +u 2       0 1 0 0 0 =   =   =   u v W W       s 1 2 1 0 2 0 10       Control signals Control distribution 0 0.2 10 0.15 |G vu | v, u −1 0.1 10 0.05 v u 1 u 1 u 2 u 2 −2 0 10 0 5 10 15 0 10 Time (s) Frequency (rad/sec) 6

  7. u 3 u 1 u 4 u 7 Admire u 5 u 2 u 6       u C       1 l = = = ×       u � v C B 3 7 � m       u C       7 n � 1000 m, Mac h 0.5 � Canards for HF � Minimum drag � Improved n z response Design parameters   0 0 0 =   u arg min u s � 2   0 0 0 ⇒ = = u s v Bu v   x x x   = = u u 0   1 2  �  ( ) ( ) = = W diag 2 ... 2 , W diag 5 5 10 ... 10 � 1 2 ( ) ( ) ( ) = − + u t Fu t T Gv t 7

  8. Control distribution Roll Pitch Yaw 0 0 0 10 10 10 −1 10 −1 10 Control distribution −1 10 −2 10 −2 10 −3 10 −2 10 Canard wings −3 10 −4 10 Outboard elevons Inboard elevons Rudder −3 −5 −4 10 10 10 0 2 0 2 0 2 10 10 10 10 10 10 Frequency (rad/sec) Frequency (rad/sec) Frequency (rad/sec) Simulation results Roll rate Pitch rate Sideslip 250 30 4 25 3 200 20 2 150 15 p (deg/s) q (deg/s) β (deg) 1 100 10 0 5 50 −1 0 0 −2 −5 −50 −10 −3 0 2 4 6 0 2 4 6 0 2 4 6 Time (s) Time (s) Time (s) 8

  9. Control surfaces Right canard Right inboard elevon 10 10 5 5 0 0 u 1 (deg) u 4 (deg) −5 −5 −10 −10 −15 −15 0 2 4 6 0 2 4 6 Time (s) Time (s) Dynamic vs static Pilot load factor Non−minimum phase behavior 7 1.8 δ c for high freq. min || δ || 6 1.6 δ c =0 5 1.4 4 n z (−) n z (−) 1.2 3 1 2 0.8 1 0 0.6 0 1 2 3 1 1.1 1.2 1.3 Time (s) Time (s) 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend