dust and biomarkers from impacts on
play

Dust (and biomarkers?) from impacts on Motivation: Characterisa- - PowerPoint PPT Presentation

Gianni Cataldi Dust (and biomarkers?) from impacts on Motivation: Characterisa- tion of exoplanets exoplanets Modelling Detectability Gianni Cataldi 1 , 2 , Alexis Brandeker 1 , 2 , Philippe Th ebault 3 1 Department of Astronomy, Stockholm


  1. Gianni Cataldi Dust (and biomarkers?) from impacts on Motivation: Characterisa- tion of exoplanets exoplanets Modelling Detectability Gianni Cataldi 1 , 2 , Alexis Brandeker 1 , 2 , Philippe Th´ ebault 3 1 Department of Astronomy, Stockholm University 2 Stockholm University Astrobiology Centre 3 LESIA-Observatoire de Paris, UPMC Univ. Paris 06, Univ. Paris-Diderot, France Lund, 2015-05-06 1 / 12

  2. Outline Gianni Cataldi Motivation: Characterisa- tion of 1 Motivation: Characterisation of exoplanets exoplanets Modelling Detectability 2 Modelling the impact event and collisional evolution 3 Detectability 2 / 12

  3. Characterisation of Earth-sized exoplanets • Earth-like planets around Sun-like stars appear to be Gianni Cataldi relatively common Motivation: • ultimate goal: find a second genesis of life Characterisa- tion of • large variety of planetary bodies in the solar system exoplanets (atmospheres, surface properties, composition,. . . ) Modelling Detectability • characterisation of detected exoplanets warranted Image credit: NASA Ames/SETI Institute/JPL-Caltech 3 / 12

  4. Techniques to characterise exoplanets • radial velocity and transits (bulk properties) Gianni Cataldi • spectroscopy (atmosphere, surface) Motivation: Characterisa- • . . . impact event? tion of exoplanets Modelling Detectability b 3,650 Best- f t model: 190 × solar metallicity Pure water model: 10,000 × solar metallicity 3,600 Solar cloud-free model with low C/O Solar model with clouds at 80 mbar 3,550 Solar cloud-free model ( R p / R s ) 2 (p.p.m.) 3,500 3,450 3,400 3,350 3,300 1.2 1.3 1.4 1.5 1.6 Wavelength ( μ m) Fraine et al. (2014) 4 / 12 ʘ

  5. Idea: dust from impact on exoplanet • impact accelerates surface material (potentially including Gianni Cataldi biomarkers) to escape velocity Motivation: • escaping fragments form circumstellar belt Characterisa- tion of • mutual collisions produce dust (debris disk-type evolution), exoplanets resulting in much larger surface area Modelling • is detection of planetary dust possible? Biomarkers? Detectability Image credit: David Hardy 5 / 12

  6. Modelling of the impact event Gianni Cataldi Motivation: Characterisa- tion of 1 Calculate amount of escaping mass for given impact exoplanets scenario Modelling • total escaping mass Detectability • mass escaping without substantial shock damage 2 assess collisional evolution using simplified analytical model (debris disk) 3 estimate fractional luminosity as a function of time 6 / 12

  7. 1. How much material is escaping? For a 20 km diameter impactor: Gianni Cataldi Motivation: Characterisa- parameter asteroid tion of Earth Mars Moon exoplanets 6 . 7 × 10 15 2 . 5 × 10 16 8 . 4 × 10 16 M ( > v esc ) kg Modelling < 46 GPa % 9.9 17.2 20.3 Detectability parameter comet Earth Mars Moon 5 . 8 × 10 15 2 . 4 × 10 16 8 . 0 × 10 16 M ( > v esc ) kg < 46 GPa % 11.2 11.8 12.6 reference values: Earth continental crust 1 . 5 × 10 22 kg; asteroid belt 3 × 10 21 kg; zodiacal dust 2 × 10 16 kg 7 / 12

  8. 2. Collisional evolution • relevant processes: Gianni Cataldi • atmospheric braking: lower size cutoff • collisions (production of smaller fragments) Motivation: Characterisa- • radiation pressure (removal process) tion of • Poynting-Robertson (PR) drag (removal process) exoplanets Modelling • assess collisional evolution under various simplifying Detectability assumptions (size distribution, collisions / PR drag,. . . ) Image credit: Kouji Kanba / ISAS / JAXA 8 / 12

  9. 3. Fractional luminosity (as a function of time) f = L dust / L ∗ Gianni Cataldi Motivation: Characterisa- tion of exoplanets Modelling Detectability 9 / 12

  10. fractional luminosities parameter asteroid Gianni Cataldi Earth Mars Moon Motivation: Myr 1.8 0.7 0.3 t min , ini Characterisa- Myr 3.4 1.7 1.0 tion of t max exoplanets 5 . 8 × 10 − 9 1 . 7 × 10 − 8 4 . 7 × 10 − 8 - f max , bl Modelling 2 . 4 × 10 − 10 1 . 3 × 10 − 9 5 . 5 × 10 − 9 - f max , PR Detectability parameter comet Earth Mars Moon t min , ini Myr 1.3 0.5 0.2 t max Myr 2.1 0.9 0.5 7 . 8 × 10 − 9 2 . 6 × 10 − 8 7 . 2 × 10 − 8 f max , bl - 3 . 9 × 10 − 10 2 . 5 × 10 − 9 1 . 1 × 10 − 8 f max , PR - reference values: HR 4796A 5 × 10 − 3 ; zodiacal dust 10 − 8 − 10 − 7 ; Kuiper belt dust ∼ 10 − 7 10 / 12

  11. . . . so, can we detect the fragments? • difficult with current instrumentation. . . Gianni Cataldi • . . . but in the reach of future instruments (e.g. Darwin, Motivation: Characterisa- ELT,. . . ) tion of exoplanets Modelling Detectability Roberge et al. 2012 11 / 12

  12. Summary Gianni Cataldi Motivation: • for a given impact, we computed the escaping mass, its Characterisa- tion of collisional evolution and the fractional luminosity exoplanets • f dust ≈ f zodi Modelling Detectability • dust from impacts on exoplanets is difficult to detect with current instrumentation, but future instruments will be able to detect such dust • background source: exozodiacal dust • next step: study dust composition (biomarkers) with spectroscopy? 12 / 12

  13. fragment size distribution Gianni Cataldi 1 / 3

  14. timescale for (catastrophic) collisions Gianni Cataldi 2 / 3

  15. Impact rate Gianni Cataldi Chapman 2004 3 / 3

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend