doubly charged scalars at high energy and high precision
play

Doubly-charged scalars at high-energy and high-precision experiments - PowerPoint PPT Presentation

Doubly-charged scalars at high-energy and high-precision experiments B HUPAL D EV Washington University in St. Louis with M. J. Ramsey-Musolf (UMass) and Y. Zhang (WashU), arXiv:1805.0xxxx PHENO 2018 University of Pittsburgh May 8, 2018


  1. Doubly-charged scalars at high-energy and high-precision experiments B HUPAL D EV Washington University in St. Louis with M. J. Ramsey-Musolf (UMass) and Y. Zhang (WashU), arXiv:1805.0xxxx PHENO 2018 University of Pittsburgh May 8, 2018

  2. Outline Introduction: Energy versus Precision Frontier Example: LHC versus MOLLER A case study: Doubly charged scalar Conclusion

  3. Two Frontiers: Energy versus Precision [Le Dall, Pospelov, Ritz (PRD ’15)]

  4. Two Frontiers: Energy versus Precision Complementary and intertwined. Need input from both to probe new physics.

  5. Two Frontiers: Energy versus Precision detector systems hybrid toroid upstream liquid toroid hydrogen 28 m target electron beam Example: LHC versus MOLLER

  6. MOLLER Experiment M easurement O f a L epton L epton E lectroweak R eaction detector systems hybrid toroid upstream liquid toroid hydrogen 2 8 target m electron beam Scattering of longitudinally polarized electrons off unpolarized electrons. Upgraded 11 GeV electron beam in Hall A at JLab.

  7. Parity-Violating Asymmetry A PV = σ R − σ L σ R + σ L p 1 p 1 � p 1 e - e - e - e - e - e - e - p 1 � Z Z � � p 2 � e - e - e - e - e - e - e - � p 2 p 2 p 2 2 y ( 1 − y ) G F A SM 1 + y 4 + ( 1 − y ) 4 Q e PV = mE √ W � 2 πα � � � � For the MOLLER design, A SM PV ≈ 33 ppb (including 1-loop effect). Goal: δ A PV = 0 . 7 ppb. [J. Benesch et al. [MOLLER Collaboration], arXiv:1411.4088 [nucl-ex]] Achieve a 2.4% precision in the measurement of Q e W .

  8. Sensitive to New Physics e − e − e − e − Λ 1 � = � √ ≃ 7 . 5 TeV | g 2 RR − g 2 LL | 2 G F | ∆ Q e W |

  9. Case Study: Doubly Charged Scalar e − e − H −− f ee f ee e − e − | ( f L ) ee | 2 e L γ µ e L )(¯ M PV ∼ ) 2 (¯ e L γ µ e L ) + ( L ↔ R ) . 2 ( M ±± L M H ±± MOLLER Sensitivity : L , R | ( f L , R ) ee | � 5 . 3 TeV .

  10. Case Study: Doubly Charged Scalar 10 MOLLER prospect 1 δ A PV [ ppb ] | ( | f ( f | ( L f L ) ) L 0.1 ee ee ) | ee | = | = = 0 0 . 1 0 . 1 1 10 - 2 10 - 3 10 4 100 1000 ±± [ GeV ] M H L [BD, Ramsey-Musolf, Zhang ’18]

  11. Why Doubly Charged Scalar? Neutrino Mass via Type-II Seesaw L Y = − ( f L ) ij ψ T L , i C i σ 2 ∆ L ψ L , j + H . c . √ m ν U T . m ν = 2 f L v ∆ = U � [Schechter, Valle (PRD ’80); Mohapatra, Senjanovi´ c (PRD ’81); Lazarides, Shafi, Wetterich (NPB ’81)] Fixes the elements of f L (up to an overall scale)

  12. LFV Constraints � � 2 Experimental limit M H L Bound × Process Constraint on on BR 100 GeV | ( f † < 4 . 2 × 10 − 13 < 2 . 4 × 10 − 6 µ → e γ L f L ) e µ | < 1 . 0 × 10 − 12 < 2 . 3 × 10 − 7 µ → 3 e | ( f L ) µ e || ( f L ) ee | | ( f † < 3 . 3 × 10 − 8 < 1 . 6 × 10 − 3 τ → e γ L f L ) e τ | | ( f † < 4 . 4 × 10 − 8 < 1 . 9 × 10 − 3 τ → µγ L f L ) µτ | τ → e + e − e − < 2 . 7 × 10 − 8 < 9 . 2 × 10 − 5 | ( f L ) τ e || ( f L ) ee | τ → µ + µ − e − < 2 . 7 × 10 − 8 < 6 . 5 × 10 − 5 | ( f L ) τµ || ( f L ) µ e | τ → e + µ − µ − < 1 . 7 × 10 − 8 < 7 . 3 × 10 − 5 | ( f L ) τ e || ( f L ) µµ | τ → e + e − µ − < 1 . 8 × 10 − 8 < 5 . 3 × 10 − 5 | ( f L ) τ e || ( f L ) µ e | τ → µ + e − e − < 1 . 5 × 10 − 8 < 6 . 9 × 10 − 5 | ( f L ) τµ || ( f L ) ee | τ → µ + µ − µ − < 2 . 1 × 10 − 8 < 8 . 1 × 10 − 5 | ( f L ) τµ || ( f L ) µµ | [BD, Rodejohann, Vila (NPB ’17)]

  13. MOLLER versus LFV 10 M O L L E R p r o 1 s p e c t |( f L ) ee | excluded by μ → eee 0.1 excluded by μ → e γ 10 - 2 NH, M H L ±± = 1 TeV 10 - 3 10 - 2 0.1 1 10 v Δ [ eV ] [BD, Ramsey-Musolf, Zhang ’18]

  14. MOLLER versus LFV 10 M O L L E R p r o s p e 1 c t |( f L ) ee | e x c l e u x d c e l 0.1 d u d b e y d b μ y → μ e → γ e e e 10 - 2 IH, M H L ±± = 1 TeV 10 - 2 0.1 1 10 v Δ [ eV ] [BD, Ramsey-Musolf, Zhang ’18]

  15. Parity-Violating Left-Right Model L Y ⊃ − ( f R ) ij ψ T R , i C i σ 2 ∆ R ψ R , j + H . c .. Could have f R � = f L at low scale. [Chang, Mohapatra, Parida (PRL ’84)] f R is not related to the neutrino oscillation data. LFV constraints do not restrict ( f R ) ee anymore. Other relevant constraints: Neutrinoless double beta decay Bhabha scattering at LEP: e + e − → e + e − . Drell-Yan process at LHC: pp → γ ∗ / Z ∗ → H ++ H −− . Future prospects at ILC/CLIC: e + e − → e ± e ± H ∓∓ and e ± γ → e ∓ H ±± . R R [BD, Mohapatra, Zhang ’18]

  16. Parity-Violating Left-Right Model 10 perturbative limit ee → ee [ IH ] MOLLER 1 0 νββ [ NH ] |( f R ) ee | 0.1 dilepton limits CLIC ILC 10 - 2 parity - violating case 10 - 3 0.5 1 5 10 ±± [ TeV ] M H R [BD, Ramsey-Musolf, Zhang ’18]

  17. Conclusion Complementarity between the high-energy and high-precision experiments. We considered a case study of doubly-charged scalars. Can be probed at the MOLLER experiment up to ∼ 20 TeV. For the parity-violating left-right scenario, goes well beyond the current constraints, as well as the future collider sensitivities.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend