baryons dark matter and light scalars
play

Baryons, Dark Matter, and Light Scalars Takeshi Kobayashi (SISSA) - PowerPoint PPT Presentation

Baryons, Dark Matter, and Light Scalars Takeshi Kobayashi (SISSA) based on arXiv:1612.04824, 1708.00015 with A. De Simone, V. Ir i , S. Liberati, R. Murgia, M. Viel YKIS 2018a, YITP LIGHT SCALARS are ubiquitous in extensions of the


  1. Baryons, Dark Matter, and Light Scalars Takeshi Kobayashi (SISSA) based on arXiv:1612.04824, 1708.00015 with A. De Simone, V. Ir š i č , S. Liberati, R. Murgia, M. Viel YKIS 2018a, YITP

  2. LIGHT SCALARS • are ubiquitous in extensions of the Standard Model e.g. QCD axion, string axiverse Svrcek, Witten ’06 Peccei, Quinn ’77 Weinberg ’78 Wilczek ’78 Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell ’09

  3. LIGHT SCALARS • are ubiquitous in extensions of the Standard Model e.g. QCD axion, string axiverse Svrcek, Witten ’06 Peccei, Quinn ’77 Weinberg ’78 Wilczek ’78 Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell ’09 • can be dark matter may even solve the small-scale “crisis” of CDM, if ultralight (fuzzy) Hu, Barkana, Gruzinov ’00

  4. LIGHT SCALARS • are ubiquitous in extensions of the Standard Model e.g. QCD axion, string axiverse Svrcek, Witten ’06 Peccei, Quinn ’77 Weinberg ’78 Wilczek ’78 Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell ’09 • can be dark matter may even solve the small-scale “crisis” of CDM, if ultralight (fuzzy) Hu, Barkana, Gruzinov ’00 strong constraints from cosmology

  5. LIGHT SCALARS • are ubiquitous in extensions of the Standard Model e.g. QCD axion, string axiverse Svrcek, Witten ’06 Peccei, Quinn ’77 Weinberg ’78 Wilczek ’78 Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell ’09 • can be dark matter may even solve the small-scale “crisis” of CDM, if ultralight (fuzzy) Hu, Barkana, Gruzinov ’00 strong constraints from cosmology • can generate the baryon asymmetry of the Universe

  6. LIGHT SCALARS • are ubiquitous in extensions of the Standard Model e.g. QCD axion, string axiverse Svrcek, Witten ’06 Peccei, Quinn ’77 Weinberg ’78 Wilczek ’78 Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell ’09 • can be dark matter may even solve the small-scale “crisis” of CDM, if ultralight (fuzzy) Hu, Barkana, Gruzinov ’00 strong constraints from cosmology Today’s talk • can generate the baryon asymmetry of the Universe

  7. Cosmological Constraints on Ultralight Scalar DM arXiv:1708.00015 TK, Murgia, De Simone, Ir š i č , Viel

  8. PECULIAR FEATURE OF LIGHT SCALAR DM Wave nature of the scalar field is prominent on small scales (< de Broglie wavelength). Khlopov, Malomed, Zeldovich ’85 Nambu, Sasaki ’90 Ratra ’91

  9. PECULIAR FEATURE OF LIGHT SCALAR DM Wave nature of the scalar field is prominent on small scales (< de Broglie wavelength). Khlopov, Malomed, Zeldovich ’85 Nambu, Sasaki ’90 Ratra ’91 Klein-Gordon eq. Einstein’s eq. r µ r µ φ = m 2 φ G µ ν = 8 π G T µ ν Switching to a fluid description in a perturbed FRW universe, ✓ ∂ 2 √ ρ ◆ v i + Hv i + v j ∂ j v i = − ∂ i Φ 1 Euler eq. 2 a 3 m 2 ∂ i + ˙ √ ρ a a ρ + 3 H ρ + ∂ i ( ρ v i ) continuity eq. ˙ = 0 a ∂ 2 Φ = 4 π G ρ − 3 Poisson eq. 2 H 2 a 2

  10. SUPPRESSION OF LINEAR MATTER POWER P ( φ +c) ( k ) m0 1.0 P (c) m0 ( k ) 0.8 F = 0.05 F = 0.1 0.6 F = 0.2 m = 10 − 22 eV F = 0.4 0.4 F = 0.6 F = 0.8 0.2 F = 1 k [Mpc -1 ] 0.1 1 10 100 Ultralight scalar DM has been expected to solve the small-scale “problems” of CDM (e.g. missing-satellite, too-big-to-fail, core-cusp). Hu, Barkana, Gruzinov ’00 Hui, Ostriker, Tremaine, Witten ’16

  11. LYMAN- α FOREST figure from Springel, Frenk, White astro-ph/0604561 image courtesy of Vid Ir š i č

  12. LYMAN- α CONSTRAINT 1.0 3 σ C. L. 2 σ C. L. 0.8 scalar DM fraction 0.6 F 0.4 0.2 0.0 10 − 23 10 − 22 10 − 21 10 − 20 m [eV] scalar mass

  13. IMPLICATIONS FOR MISSING SATELLITES Estimate of Milky Way satellites suggests 1.0 3 σ C. L. (Lyman- α forest) 2 σ C. L. (Lyman- α forest) ”solution” to missing satellite 0.8 0.6 F 0.4 0.2 0.0 10 − 23 10 − 22 10 − 21 10 − 20 m [eV] there is very little room for ultralight DM to solve the problem.

  14. COMMENTS • Further constraints from CMB and DM isocurvature perturbations • The constraints apply to generic theories that contain ultralight scalar fields

  15. Baryon Asymmetry from a Light Scalar: Geometric Baryogenesis arXiv:1612.04824 Liberati, TK, De Simone

  16. BASIC ASSUMPTIONS • existence of a scalar with an (approximate) shift symmetry • the scalar is allowed to couple to various fields through shift-symmetric operators

  17. SHIFT-SYMMETRIC ACTION √− g = − 1 L 2( ∂φ ) 2 + φ × ∂ µ ( ) + · · ·

  18. SHIFT-SYMMETRIC ACTION √− g = − 1 L 2( ∂φ ) 2 + φ × ∂ µ ( ) + · · ·

  19. SHIFT-SYMMETRIC ACTION √− g = − 1 L 2( ∂φ ) 2 + φ × ∂ µ ( ) + · · · with gauge fields: φ F ˜ F

  20. SHIFT-SYMMETRIC ACTION √− g = − 1 L 2( ∂φ ) 2 + φ × ∂ µ ( ) + · · · with gauge fields: ( for SU(2) ) / φ r µ j µ φ F ˜ F B

  21. SHIFT-SYMMETRIC ACTION √− g = − 1 L 2( ∂φ ) 2 + φ × ∂ µ ( ) + · · · with gauge fields: ( for SU(2) ) / φ r µ j µ φ F ˜ F B with gravity: φ G G = R 2 − 4 R µ ν R µ ν + R µ νρσ R µ νρσ (Gauss-Bonnet term )

  22. SHIFT-SYMMETRIC ACTION √− g = − 1 L 2( ∂φ ) 2 + φ × ∂ µ ( ) + · · · with gauge fields: ( for SU(2) ) / φ r µ j µ φ F ˜ F B with gravity: φ G G = R 2 − 4 R µ ν R µ ν + R µ νρσ R µ νρσ (Gauss-Bonnet term ) Gravitational couplings are special in that they induce coherent effects to the scalar in an expanding universe.

  23. SHIFT-SYMMETRIC ACTION √− g = − 1 L 2( ∂φ ) 2 + φ × ∂ µ ( ) + · · · with gauge fields: ( for SU(2) ) / φ r µ j µ φ F ˜ F B with gravity: φ G G = R 2 − 4 R µ ν R µ ν + R µ νρσ R µ νρσ (Gauss-Bonnet term ) Gravitational couplings are special in that they induce coherent effects to the scalar in an expanding universe.

  24. SHIFT-SYMMETRIC ACTION √− g = − 1 L 2( ∂φ ) 2 + φ × ∂ µ ( ) + · · · with gauge fields: ( for SU(2) ) / φ r µ j µ φ F ˜ F B with gravity: φ G G = R 2 − 4 R µ ν R µ ν + R µ νρσ R µ νρσ (Gauss-Bonnet term ) Gravitational couplings are special in that they induce coherent effects to the scalar in an expanding universe.

  25. GEOMETRIC BARYOGENESIS p� g = � 1 L 2( ∂φ ) 2 + φ M G + φ f r µ j µ B + · · · } non-gravitational or mass dim. ≥ 6

  26. GEOMETRIC BARYOGENESIS p� g = � 1 L 2( ∂φ ) 2 + φ M G + φ f r µ j µ B + · · · } non-gravitational or mass dim. ≥ 6 In a flat FRW universe ˙ φ = 8 H 3 φ φ G = 24( H 4 + H 2 ˙ f r µ j µ ˙ H ) , f n B M , B = � → relative shift in baryon/antibaryon spectra → baryogenesis even in equilibrium (due to CPT violation) T 5 n B Cohen, Kaplan ’87 ∼ fMM 3 s p

  27. GEOMETRIC BARYOGENESIS p� g = � 1 L 2( ∂φ ) 2 + φ M G + φ f r µ j µ B + · · · } non-gravitational or mass dim. ≥ 6 In a flat FRW universe ˙ φ = 8 H 3 φ φ G = 24( H 4 + H 2 ˙ f r µ j µ ˙ H ) , f n B M , B = � spontaneous breaking of φ Lorentz invariance due to baryon asymmetry → relative shift in baryon/antibaryon spectra cosmic expansion → baryogenesis even in equilibrium (due to CPT violation) T 5 n B Cohen, Kaplan ’87 ∼ fMM 3 s p

  28. GEOMETRIC BARYOGENESIS WITH AN ULTRALIGHT SCALAR p� g = � 1 B � 1 L 2( ∂φ ) 2 + φ M G + φ 2 m 2 φ 2 + · · · f r µ j µ 18 too much DM isocurvature e.g., m = 10 − 22 eV 17 exceeds Planck bound on inflation scale 16 φ ? = f log 10 ( T dec [ GeV ]) GeV 8 1 M = 10 15 GeV 4 1 M = 10 n o GeV 14 0 i 1 t M = 10 c a t e n r k a c c fi a 13 b i n g n i o s y r a 12 b too much axion DM 11 11 12 13 14 15 16 17 18 log 10 ( f [ GeV ])

  29. GEOMETRIC BARYOGENESIS WITH AN ULTRALIGHT SCALAR p� g = � 1 B � 1 L 2( ∂φ ) 2 + φ M G + φ 2 m 2 φ 2 + · · · f r µ j µ 18 too much DM isocurvature e.g., m = 10 − 22 eV 17 exceeds Planck bound on inflation scale 16 φ ? = f log 10 ( T dec [ GeV ]) GeV 8 1 M = 10 15 GeV 4 1 M = 10 n o GeV 14 0 i 1 t M = 10 c a t e spoils Lyman- α forest n r k a c c fi a 13 b i n g n i o s y r a 12 b too much axion DM 11 11 12 13 14 15 16 17 18 log 10 ( f [ GeV ])

  30. GEOMETRIC BARYOGENESIS WITH AN ULTRALIGHT SCALAR p� g = � 1 B � 1 L 2( ∂φ ) 2 + φ M G + φ 2 m 2 φ 2 + · · · f r µ j µ 18 too much DM isocurvature e.g., m = 10 − 22 eV 17 exceeds Planck bound on inflation scale 16 φ ? = f log 10 ( T dec [ GeV ]) GeV 8 1 Alternatively, geometric baryogenesis M = 10 15 GeV 4 1 M = 10 can also be driven by the QCD axion! n o GeV 14 0 i 1 t M = 10 c a t e spoils Lyman- α forest n r k a c c fi a 13 b i n g n i o s y r a 12 b too much axion DM 11 11 12 13 14 15 16 17 18 log 10 ( f [ GeV ])

  31. SUMMARY • Light scalars, if present in the theory, have significant impact in cosmology • CANNOT solve the small-scale issues without spoiling the Lyman- α forest • CAN generate the baryon asymmetry of our Universe!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend