double parton sca ering for
play

Double parton sca/ering for perturba3ve transverse momenta Maarten - PowerPoint PPT Presentation

Double parton sca/ering for perturba3ve transverse momenta Maarten Buffing In collaboration with Markus Diehl and Tomas Kasemets QCD evolution workshop 2016 May 31, 2016 Content - outline Brief motivation/introduction Soft factors


  1. Double parton sca/ering for perturba3ve transverse momenta Maarten Buffing In collaboration with Markus Diehl and Tomas Kasemets QCD evolution workshop 2016 May 31, 2016

  2. Content - outline • Brief motivation/introduction • Soft factors • Color for DPDFs/DTMDs • Evolution equations – Writing them down for DTMDs – Solving them • Matching: cross section contributions for large y • Conclusions 2

  3. Motivation • DPDs: double parton distribution functions • Factorization: stick to singlets in final states – Double Drell-Yan – Higgs + W/Z • For perturbative q T → significant predictive results • Motivation and goals – Formulate description to handle soft factors – Write down evolution equations – Solve evolution equations – Matching equations for DPDFs/DTMDs 3 Diehl, Ostermeier, Schäfer, JHEP 1203 (2012) 089

  4. Short-distance expansion • Differences compared to TMDs – Two hard processes involved – Two coefficient functions per DTMD – Positions z 1 and z 2 (compare with b T for the TMD case) – Additional distance y Figure: modified from Diehl, Ostermeier, • Consider the limit Schäfer, JHEP03 (2012) 089 – | z 1 |, | z 2 | much smaller than 1/ Λ – | z 1 |, | z 2 | ≪ y , with y fixed • Gives separate matching factors F us ( x i , z i , y ) = C f ( x 0 x 1 C f ( x 0 x 2 F us ( x 0 1 , z 1 ) ⊗ 2 , z 2 ) ⊗ i , y ) with Z 1 ⇣ x dx 0 ⌘ C ( x 0 ) ⊗ x F ( x 0 ) = x 0 C ( x 0 ) F x 0 x 4

  5. Soft factors • Wilson line structure from factorization formula. • Nontrivial color complications. Collinear and soft factors carry color indices. • Wilson line self-interactions drop out in cross section. Figure: Diehl, Gaunt, Ostermeier, Plößl, Schäfer, JHEP01 (2016) 076 Collins, Foundations of perturbative QCD , (2011); Aybat, Rogers, PRD 83 (2011) 114042; Diehl, Gaunt, Ostermeier, Plößl, Schäfer, JHEP01 (2016) 076 5

  6. Soft factors • TMDs • Soft functions for the single TMD related to K through  ∂ � K ( z ; µ ) = 1 ∂ log S ( z ; y A , −∞ ) − log S ( z ; + ∞ , y B ) 2 ∂ y A ∂ y B • Soft function not matrix valued • Square root construction for TMD (see Collins’ book) • DTMDs • For DPDs: matrix valued functions (working hypothesis) h i S ( z 1 , z 2 , y , y A , y B ) = exp ( y A − y B ) K ( z 1 , z 2 , y ) • Soft function matrix valued • Square root construction extended to matrix expressions 6 Collins, Foundations of perturbative QCD , (2011); Aybat, Rogers, PRD 83 (2011) 114042

  7. Soft factors (technical details) • Subtracted DPD distributions are defined as L → 0 S − 1 F qq ( v c ) = lim qq ( v L , v C ) F us,qq ( v L ) v 2 with F us vector in color space and S a matrix. • Matrix equivalent of square root construction S − 1 ( v L , v C ) = S 1 / 2 ( − v C , v R ) S − 1 / 2 ( v L , v R ) S − 1 / 2 ( v L , v C ) using composition law S ( v A , − v B ) S ( v B , v C ) = S ( v A , v C ) and a similar expression for left moving particles. • Wilson line self-interactions drop out in F . 7 Collins, Foundations of perturbative QCD , (2011); Aybat, Rogers, PRD 83 (2011) 114042

  8. Soft factors • Wilson line structure for double Drell-Yan with Wilson lines � z + = z − =0 Z 0  − igt a d λ vA a ( z + λ v ) W ij ( z , v ) = P exp ij −∞ and similarly for the adjoint representation. • We will need uncontracted color indices in the middle. 8

  9. Soft factors • Uncontracted indices in the middle • Soft factor for DTMDs factorizes in small-distance expansion as S ( z 1 , z 2 , y ) = C s ( z 1 ) C s ( z 2 ) S ( y ) • Wilson lines in S( y ) pairwise at the same transverse position. • We require a simplification of the color indices. 9

  10. Color structure • Recall full Wilson line structure • Hard scattering couples four parton lines, insert color projectors • Examples of color projectors – Quarks: = 1 p j 1 j 0 1 k 1 k 0 δ j 1 j 0 1 δ k 1 k 0 1 1 N c 1 p j 1 j 0 1 k 1 k 0 = 2 t a 1 t a 1 j 1 j 0 k 1 k 0 8 1 – For gluons: more possibilities – Mixed quark-gluon projectors also exist • Highly nontrivial whether color structure can be factorized. 10

  11. Color structure • Recall full Wilson line structure • Hard scattering couples four parton lines, insert color projectors Color trick (in collinear situation: WW † = 1 ) • 11 For proof: use color Fierz identity

  12. Color structure Color trick (in collinear situation: WW † = 1 ) • • For proof: use color Fierz identity: jj 0 = δ ij 0 δ i 0 j − 1 2 t a ii 0 t a δ ii 0 δ jj 0 N c • Trick also works for adjoint Wilson lines. Use color Fierz identity and   t a Wt b W †  W ab = 2 Tr  12

  13. Color structure Color trick (in collinear situation: WW † = 1 ) • • Dynamical and not just some color algebra • With same trick show that S( y ) is color diagonal. 13

  14. Implications for soft factor • Color projection of fields at infinity rather than ξ + = ξ - = 0 . Related ⇐ ⇒ • Allows for relating most general soft function with open indices in the middle with soft function with contracted indices in the middle. • For collinear factorization case only! 14

  15. Renormalization and rapidity evolution • Short-distance expansion – The two hard processes are separated • Evolution equations for DTMDs – Two renormalization scales: µ 1 and µ 2 • Soft factor recap – Working hypothesis h i S ( z 1 , z 2 , y , y A , y B ) = exp ( y A − y B ) K ( z 1 , z 2 , y ) – Soft factor becomes RR 0 S ( z 1 , z 2 , y ) = R C s ( z 1 ) R C s ( z 2 ) RR S ( y ) δ RR 0 • For phenomenology: only four independent collinear soft functions 15

  16. Renormalization and rapidity evolution • TMDs ∂ ∂ log µF ( x, z ; µ, ζ ) = γ F ( µ, ζ ) F ( x, z ; µ, ζ ) ∂ log ζ F ( x, z , µ, ζ ) = 1 ∂ 2 K ( z ; µ ) F ( x, z , µ, ζ ) • DTMDs ∂ R F ( x i , z i , y ; µ i , ζ ) = γ F ( µ 1 , x 1 ζ /x 2 ) R F ( x i , z i , y ; µ i , ζ ) ∂ log µ 1 ∂ R F ( x i , z i , y ; µ i , ζ ) = γ F ( µ 2 , x 2 ζ /x 1 ) R F ( x i , z i , y ; µ i , ζ ) ∂ log µ 2 R F ( x i , z i , y , µ i , ζ ) = 1 ∂ RR 0 K ( z i , y ; µ i ) R 0 F ( x i , y , µ i , ζ ) X ∂ log ζ 2 R 0 • DTMD renormalizations are independent, since they are separated. 16 Collins, Foundations of perturbative QCD , (2011); Aybat, Rogers, PRD 83 (2011) 114042

  17. Evolution: TMDs vs DTMDs PDF/TMDs DPDF/DTMDs • Soft function not matrix valued • Soft function matrix valued • Just the position of one parton • Positions of two partons and the distance y • Renormalization scale µ • Renormalization scales µ 1 , µ 2 • Rapidity evolution scale ζ • Rapidity evolution scale ζ – ζ dependence also for collinear distri- bution if R ≠ 1. • Two coefficient functions per • One coefficient function per DTMD TMD 17

  18. DTMD evolution • The evolution of DTMDs is in the short-distance matching given by R F ( x i , z i , y ; µ 1 , µ 2 , ζ ) ⇢Z µ 1 p p dµ  x 1 ζ /x 2 � x 1 ζ /x 2 + R K ( z 1 , µ 01 ) log γ F ( µ, µ 2 ) − γ K ( µ ) log = exp µ µ µ 01 µ 01 Z µ 2 p p  � dµ x 2 ζ /x 1 x 2 ζ /x 1 γ F ( µ, µ 2 ) − γ K ( µ ) log + R K ( z 2 , µ 02 ) log + µ µ µ 02 µ 02 √ ζ � + R J ( y , µ 01 , µ 02 ) log √ ζ 0 × R C ( x 0 R C ( x 0 R F ( x 0 1 , z 1 ; µ 01 , µ 2 2 , z 2 ; µ 02 , µ 2 01 ) ⊗ 02 ) ⊗ i , y ; µ 01 , µ 02 , ζ 0 ) x 1 x 2 • From additive structure of the Collins-Soper evolution kernel we have the sum for the two contributions for the µ 1 and µ 2 dependences. • K ( z 1 , z 2 , y )-kernel splits in three separate contributions: K ( z 1 , µ 01 ), K ( z 2 , µ 02 ) and J ( y , µ 01 , µ 02 ) when collinear soft function becomes diagonal. 18

  19. Cross section contribution • Cross section contribution given by ⇢Z µ 1 γ F ( µ, µ 2 ) − γ K ( µ ) log Q 2 + R K ( z 1 , µ 01 ) log Q 2  � dµ X 1 1 W large y = exp µ 2 µ 2 µ µ 01 01 R Z µ 2 γ F ( µ, µ 2 ) − γ K ( µ ) log Q 2 + R K ( z 2 , µ 02 ) log Q 2  � � dµ 2 2 + µ 2 µ 2 µ µ 02 02 × R C ( x 0 1 , z 1 ; µ 01 , µ 2 R C ( x 0 2 , z 2 ; µ 02 , µ 2 01 ) ⊗ 02 ) ⊗ x 1 x 2 × R C ( x 0 1 , z 1 ; µ 01 , µ 2 R C ( x 0 2 , z 2 ; µ 02 , µ 2 01 ) ⊗ 02 ) ⊗ x 1 x 2 p Q 2 1 Q 2  � i 2 h R J ( y , µ 0 i ) log 2 R F ( x i , y ; µ 0 i , ζ 0 ) R F ( x i , y ; µ 0 i , ζ 0 ) Φ ( ν y ) exp × ζ 0 • The z 1 , z 2 and y contributions nicely factorize. 19

  20. Cross section contribution • Cross section contribution given by ⇢Z µ 1 γ F ( µ, µ 2 ) − γ K ( µ ) log Q 2 + R K ( z 1 , µ 01 ) log Q 2  � dµ X 1 1 W large y = exp µ 2 µ 2 µ µ 01 01 R Z µ 2 γ F ( µ, µ 2 ) − γ K ( µ ) log Q 2 + R K ( z 2 , µ 02 ) log Q 2  � � dµ 2 2 + µ 2 µ 2 µ µ 02 02 × R C ( x 0 1 , z 1 ; µ 01 , µ 2 R C ( x 0 2 , z 2 ; µ 02 , µ 2 01 ) ⊗ 02 ) ⊗ x 1 x 2 × R C ( x 0 1 , z 1 ; µ 01 , µ 2 R C ( x 0 2 , z 2 ; µ 02 , µ 2 01 ) ⊗ 02 ) ⊗ x 1 x 2 p Q 2 1 Q 2  � i 2 h R J ( y , µ 0 i ) log 2 R F ( x i , y ; µ 0 i , ζ 0 ) R F ( x i , y ; µ 0 i , ζ 0 ) Φ ( ν y ) exp × ζ 0 • There is ζ – dependence for color non-singlet DPDFs. 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend