do do no not m measure co correlat ated observables but
play

Do Do NO NOT m measure co correlat ated observables, , but tr - PowerPoint PPT Presentation

Do Do NO NOT m measure co correlat ated observables, , but tr train ain an an Artif tific icial ial In Intellig elligenc ence e to pr predic edict them them Boram Yoon Los Alamos National Laboratory Lattice 2018, East Lansing,


  1. Do Do NO NOT m measure co correlat ated observables, , but tr train ain an an Artif tific icial ial In Intellig elligenc ence e to pr predic edict them them Boram Yoon Los Alamos National Laboratory Lattice 2018, East Lansing, Michigan, USA, July 22-28, 2018 arXiv:1807.05971

  2. Pr Prediction of ! "#$ fr from ! %#$ 1.236 1.06 1.044 1.046 1.045 1.04 1.040 1.232 1.044 1.02 1.036 1.043 1.228 1.00 1.032 1.042 1.224 1.041 0.98 1.028 1.040 1.220 0.96 1.024 g S g A g T 1.039 g V 1.216 0.94 1.020 1.038 Systematic error due to ML prediction included in errorbars • Genuine • ML Prediction Directly measured on 2263 confs Directly measured on 400 confs + ML prediction on 1863 confs

  3. La Lattice ce QCD D Observables are Corr rrelated {M π (7) , F π (7) , C 3pt:A (7) , C 3pt:V (7) , …} {M π (1) , F π (1) , C 3pt:A (1) , C 3pt:V (1) , …} ExpectaQon value N O X ≈ 1 ∑ ( n ) O X N n = 1 Markov Chain Monte Carlo Trajectory U (1) U (2) U (3) U (4) U (5) U (6) U (7) U (8) U (9) of Gibbs Samples

  4. Cor Correlation on Ma Map of of Nucleon on Observables 1 T,D C 3pt • Correlation between proton(uud) 0.9 | Correlation coefficient | 3-pt and 2-pt correlation functions A,D C 3pt 0.8 V,D C 3pt • Clover-on HISQ S,D 0.7 C 3pt ! = 0.089 fm, ' ( = 313 MeV T,U + = 10! , , = +/2 C 3pt 0.6 A,U C 3pt 0.5 • Using these correlations, V,U C 3pt / 012 can be estimated from / 312 0.4 S,U on each configuration C 3pt 0.3 C 2pt 0.2 S,U C 3pt V,U C 3pt A,U C 3pt T,U C 3pt S,D C 3pt V,D C 3pt A,D C 3pt T,D C 2pt C 3pt

  5. Machine Learning Ma • One can consider the machine ) , ( # + , ( # , , … ) Input: " # = (( # learning (ML) process as a data fitting • The machine ! has very general fitting functional form with huge number of free parameters Machine • The free parameters are determined ! from large number of training data: ! " # ≈ % # • For example, " # : pixels of a picture Output: % # % # : “ cat ” or “ dog ”

  6. Ma Machine Learning on on Lattice QCD QCD Observables • Assume N+M indep. measurements ( , ' " * , ' " + , … ) Input: ! " = (' " • Common observables ! " on all N+M Target observable # " on first N [Training Data] [Test Data] Machine N M $ (! " , # " ) (! " ) 1) Train machine F to yield # " from ! " on the Training Data Output: # " 2) Predict # " of the Test data from ! " / ≈ # " .(! " ) = # "

  7. Pr Prediction Bias ( ≈ ' $ • !(# $ ) = ' $ • Simple average ./1 Low Variance High Variance ' = 1 ( + , ' $ Low Bias $-./0 is not correct due to prediction bias • Prediction = TrueAnswer + Noise + Bias • ML prediction may have bias ( ≠ ' $ ' $ High Bias ( − ' $ Bias = ' $

  8. Bi Bias Cor Correction on [Bias Correction Data] [Test Data] [Training Data] N t N b M (4 & , ! & ) (4 & , ! & ) (4 & ) • Average of predictions on test data with bias correction ()+ ( 0 )( 1 ! = 1 , + 1 , $ % ! & % ! & − ! & . / &'()* &'( 0 )* , + ! & − ! & , = ! & • Expectation value, ! = ! & • Training data should not overlap with bias correction data • Not efficient: small training/bias correction data

  9. Bi Bias Cor Correction on – Cr Cros oss Validation on N-m m /,( = > ( ? + → > ( , ! + 9 = 1 /,@ = > @ ? + → > @ , ! + 9 = 2 /,A = > A ? + → > A , ! + 9 = 3 … … … • Average of predictions on test data with bias correction ) ,-. 4 ! = 1 1 /,& + 1 & − ! 3 /,& $ % * % ! + 2 % ! 3 &'( +',-( 3'( $ = 6/2 , 2 ≪ 6 • Full training data & precise bias estimation • Systematic error of ML prediction naturally included in error estimation

  10. Pr Prediction of ! "#$ fr from ! %#$ Input: & ' = {* +,- 0 ≤ 0/2 ≤ 3 456 } * +,- 0 Boosted Decision Tree Regression ! A,S,T,V " * 8,- 0, > 9,;,<,= 0, > Output: * 8,-

  11. De Deci cision T Tree R Regression Input: {! 0#$ 0 ≤ &/( ≤ 20 } % Output: ! "#$ 10, 5 % ! "#$ &/( = 10, -/( = 5

  12. Boos Boosted Decision on Tree (BD BDT) • Iterative boosting ! " = [Simple DT ℎ " ] ! % = ! " + [Simple DT ℎ % that corrects residual error of ! " ] ! & = ! % + [Simple DT ℎ & that corrects residual error of ! % ] ! ' = ! & + [Simple DT ℎ ' that corrects residual error of ! & ] … ! ( = ! ()% + ℎ ( ! + = ! , -../0 (+) • In this study, 3 45567 = 200 − 500

  13. ' De Deci cision T Tree ℎ " fo for # $%& 10, 5

  14. ' De Deci cision T Tree ℎ " fo for # $%& 10, 5

  15. ' De Deci cision T Tree ℎ "# fo for $ "%& 10, 5

  16. Pr Prediction of ! "#$ fr from ! %#$ 140 Genu − <C 3pt Genu > • Training and Test performed for Axial C 3pt Vector 120 Frequency Genu − C 3pt Pred 100 C 3pt - Clover-on-HISQ 80 - & = 0.089 fm, , - = 313 MeV 60 40 τ =10 - Measurements: 2263 confs ⨉ 64 srcs 20 t=5 0 • # of Training data: 400 confs -10 -5 0 5 10 -10 -5 0 5 10 A [ × 10 -16 ] V [ × 10 -16 ] # of Test data: 1864 confs C 3pt C 3pt 5 • Predictions of 1 234 10,5 / 1 934 10 140 Genu − <C 3pt Genu > Scalar C 3pt Tensor 120 Frequency Genu − C 3pt Pred 100 C 3pt 80 60 40 τ =10 20 t=5 0 -30 -15 0 15 30 -10 -5 0 5 10 S [ × 10 -16 ] T [ × 10 -16 ] C 3pt C 3pt

  17. Pr Prediction of ! "#$ fr from ! %#$ (a) Train (b) Genuine (c) Pred.[2pt] (d) Pred.[2pt+3pt(12)] 1.260 1.240 1.220 u-d g A 1.200 1.180 τ = ∞ 1.055 1.050 1.045 u-d g V 1.040 1.035 1.030 τ =14 τ =10 1.025 τ =12 τ =8 1.020 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 t - τ /2 t - τ /2 t - τ /2 t - τ /2

  18. Pr Prediction of ! "#$ fr from ! %#$ (a) Train (b) Genuine (c) Pred.[2pt] (d) Pred.[2pt+3pt(12)] 1.10 1.05 1.00 u-d 0.95 g S 0.90 0.85 0.80 τ =14 τ =10 τ =12 τ =8 1.15 u-d 1.10 g T 1.05 τ = ∞ 1.00 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 t - τ /2 t - τ /2 t - τ /2 t - τ /2

  19. Pr Prediction of ! "#$ fr from ! %#$ • Results extrapolated to & → ∞ ! 1 Genuine Pred.[ C 2pt ] Pred.[ C 2pt + C 3pt (12)] g S 0.985(22) 1.013(30) 1.008(21) g A 1.2304(48) 1.2243(67) 1.2268(54) g T 1.0312(52) 1.0342(61) 1.0304(54) g V 1.0432(20) 1.0412(23) 1.0413(21) 2263 DM 400 DM 400 DM (Direct Meas.) + 1863 Pred. + 1863 Pred.

  20. Qu Quark Ch Chromo omo EDM M (cE cEDM DM) • Simulation in presence of CPV cEDM interaction S = S QCD + S cEDM S cEDM = − i d 4 x ! seq" ∫ P" d q g s q ( σ ⋅ G ) γ 5 q P" 2 u" u" • Schwinger source method P ε" d" d" Include cEDM term in valence quark propagators P ε" d" d" by modifying Dirac operator D clov → D clov + i εσ µ ν γ 5 G µ ν seq" P )ε" P ε " • cEDM contribution to nEDM can be obtained u" u" P" by calculating vector form-factor F 3 with d" d" P" propagators including cEDM & O " # = %& ' % d" d"

  21. %&' fr Pr Prediction of ! "#$ from ! "#$ • Predict 5 678 for cEDM and 9 : insertions from 5 678 without CPV ( /01234/ • CPV interactions è phase in neutron mass ;< = 9 = + ?@ A6BC- . D E = 0 • At leading order, H can be obtained from ≡ Tr 9 : M N I 5 678 M ( )*+, ( - .

  22. %&' fr Pr Prediction of ! "#$ from ! "#$ • Training and Test performed for Input: 6,7 0 ≤ :/< ≤ 16 ]} - Clover-on-HISQ ( ) = {Re, Im[2 345 - < = 0.12 fm, K L = 305 MeV - Measurements: 400 confs ⨉ 64 srcs • # of Training data: 100 confs # of Test data: 300 confs Boosted Decision Tree 50 Genu − <C 2pt Genu > cEDM C 2pt γ 5 Regression 40 Frequency Genu − C 2pt Pred C 2pt 30 20 t=10 10 7 (BCDE, F G ) : Output: Im 2 345 0 -2 -1 0 1 2 -2 -1 0 1 2 P, cEDM [ × 10 -11 ] P, γ 5 [ × 10 -11 ] C 2pt C 2pt

  23. %&' fr Pr Prediction of ! "#$ from ! "#$ • ( )*+, 0.065 cEDM 0.060 Genuine: 0.0527(16) α cEDM 0.055 Prediction: 0.0523(16) 0.050 0.045 • ( - . Genuine ML Prediction Genuine: -0.1462(14) -0.135 -0.140 Prediction: -0.1462(16) α γ 5 -0.145 -0.150 γ 5 Ø Genuine: DM on 400 confs -0.155 2 4 6 8 10 12 Ø Prediction: DM on 100 confs t + ML prediction on 300 confs

  24. Su Summary • Machine learning is used to predict unmeasured observables from measured observables • Unbiased estimator using cross-validation is presented • Demonstrated for two lattice QCD calculations: 1) Prediction of ! "#$ from ! %#$ &'( from ! %#$ 2) Prediction of ! %#$ • The approach can be applied to various lattice calculations and reduce measurement cost

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend