discrete time evolution and baxter s q operator
play

Discrete Time Evolution and Baxter's Q-operator - PowerPoint PPT Presentation

Discrete Time Evolution and Baxter's Q-operator Christian.Korff@glasgow.ac.uk ( :( ( : a un nu nu 1) Cylindric Macdonald functions and a deformed Verlinde algebra, CMP 318 (2013) 173-246 2) From quantum Bcklund transformations to TQFT,


  1. Discrete Time Evolution and Baxter's Q-operator Christian.Korff@glasgow.ac.uk ( :( ( : a un nu nu 1) Cylindric Macdonald functions and a deformed Verlinde algebra, CMP 318 (2013) 173-246 2) From quantum Bäcklund transformations to TQFT, JPA 49 (2016) 104001 RAQIS 16

  2. Ablowitt chain quantisation Road Ladik of the map : - ' 76 ] Quantum integrate system integrate system [ Abeowik Classical . Ladik 't } { H ,4j } { Hits 2t4j*= zxj jz(Bkjt÷BB* = , #= ) . znj - - 2lnHY*4D ) tgttsttjnttitjtt µ ZDTQFT - ' [ kueishiqgi - boson algebra Poisson algebra of . ] it { }t0th2 [ ) . = - . . - 4g*4j ) , , a- Rpi ) [ pi ,Pj*I= Sijll { Yi ,Xj* } - of ) Sij C l = quantisation etc < q= ,4j}={Yi*,Xg*3=o 4. { it £ < o 1 → . , 4*→±5 ' Bethe integrals of motion ' algebra = = ( B u%* ) his u&* ) " " Ljcu Ljlui ) = . , - algebra matrix matrix YB monodromy → monodromy no , , spectral Baxter 's commuting transfer invariants matrices

  3. . Ladik Ablowitt separation of chain time flow : motion Equations of - Xj*4j ( 4g ; , + Yj + Yj Xj Yj+ , -24J 2- , ) = { . , . 't4j*4jHjEt YE Yit 2.4¥ tarts YE 's ' ) - - , Decomposition Hamiltonian into left right of and movers - = ,? 4j*Xj+ , Hi ,?4j4j*t { He ,Hr}=o H Hr Hit Ho Hr + = , , , , ' time ' flow Auxiliary - 4g*4j ) ,4j= ,4j { HL } ( l 4g , at = - them commute Since 3 flows all consider separately we can , .

  4. ,v ) Lj ( u ) . curvature [ j discrete zero matrices Datboux ( u ) Djcu , ( u Dj+ ,v , = : equation , ( ff ) Djlu ,0 ) det Dj and )=o = C v.v / v ) ( Tlj ,Ij* , Ij=YjCot ) ( Xj ,4j* ) ) transform Bcicklund not : , . } structure Poisson { which the Canonical � 1 � . map preserves ) ' 91 ] Blvd )°B( B ( vz , ) [ Veselov � 2 � BCV Commutativity , ) ° = v : - 4j*4j Yj ¥1210 ) ) Yj ' ' ' discretisalion ( 1 time Cot Cot ) : = . , 1997 ] [ Sun 's ot What the quantum analogue of this evolution ? is eqn

  5. 1- qmjtl took boson conditions periodic boundary space of - ,\n)=( • • • • • plo >=o Vacuum • : :^ !^ : : im >=H*zM,o . stale . . boson , mot : . Mn 9- mz m mz , li >=01miH n Im '2m ? . particle stale . .nmn ) ) > partition multi d=( d : , ... , , i= , above Example shown n=io : ... ,mj+ P*jlX>=( lm ) > , .mn , , , ... , ( 10,10 , 817,7 X= , 5,5 ,5 , -2,111,1 ) , 4,4 , 3,313,3 K ... ,mj 2+1+2+3 +2+4+1+3 18 fj It = = >= -1 ) Im ,mn , , , ... ; • • quantisation of the Poisson Canonical algebra An → : • • . pitpi ) [ pi ,pj*]=Sija -9.111 is

  6. . operator [ Pasquier 1992 ] Baxter 's Quantum transform Gaudin Backlund Q → - chain ) Toda ( fj ' Qcvi Qcnpj ( fj ,fg* ) = : find ( Bj ,pg*li→ .it#n Q fj* = Qcvspjtaa , o at the solvable vertex transfer matrix Define Qcv ) of exactly model as an : - insertion a gravitational insert particles into b- pile of particles inside a a c : of 5 PE with to potential E particle lift = energy one of , . ••I c • → b • o : ::←s¥tI÷=i 4 a##µ •• ' da ] o [ ' ' ' ' Iq . , insertion 1 b D= at c 'll - 4+3+3+1 ql q = a ,b , C , d 2120 E particle picture Boltzmann weight vertex configuration

  7. , Mzz Lattice mm Mio Mz Mz Whittaker y Mzo Mzo configurations & polynomials Man of - Mhm ,µ,( Me . , ,×n( No ) :< . pipit Match Let set and air , INPUT Mio=o ,o " ) In 'zm . nmn t¥ .cn . Mn µ=( vmmmomn .in?mpnTi0 µ=⇐po*Mioa,Mn mimi Tam ( ) Mom KIZCVIIM KIZCVIIM vM= i. . , . . , .io/ailv;q..o . Define then A M m - . . . ( of )Mio( 9- )Mi , , , , l F )Min it th . ' ✓ " . , . , , } the Matrix elements of . " . )= Em ' vomij IT Zlv min ... , xiijs 1 . ' ' ) . :( mjmh d=( 1mi partition the function are . OUTPUT ( cylindrical ) functions skew Whittaker of - v ;q HIM 13 ] 0 ) [ CK ' =P boundaries C > Open : , boundaries Ed ZDP ) > periodic Mio >0 =

  8. ± ~ ' Quantum where Backlund transform PjQ(v5 Qlv pjcv ) ) = . insertion transfer matrix the the Qcv ) of to model Bitfjm is row row of - - . " " time ' 16 ] discrete quantum [ flow htm CK k*MjPI*= Pitt 1) YI pjfgcvhfjncvi , ( =( 1- - Qlu ) ,Q*lv ) ]=O [ Discrete time evolution fjtciotspjcot - pj= Q*cvi§jQ*cv FYP §j § v( ; )Pj+ , 1- functional equation ) = - ; ) pj Qliotl Q*fioH" "Q*fioH Qciot * ucotii 't ( ) ot p ; Ucots = , time evolution operator ' 5 Ulot ) - for time step 't - Fyttiotlp , )p , &l9toEfI= ( l ta ; )pj+ , , . ,( ot -

  9. Multivariate Biicklund transforms & matrices fusion TQFT = ? QCK ! Qx BTCV , ) QCV , ) Pxcv Btcvn ZCV ) 0 ) . , ) = " . m> ; of o o ... , J 4 - Whittaker function Fusion matrix of Naujukcqt ' 13 ] matrices [ Fusion number TIM CK of ZD TQFT for fixed particle k . = ¢n§ v. Qxlm 2- cobordism ' > pair of pants < vl ' R in Recurrence for coefficients relations fusion NYjs*kw Nrfdtjuhtka qmim . qmit qm ' ' 's '±a "sNrPBjtjYL qmic qmt ' " )a " " ' ' " " ' ' . ) NEW a- a- ) = . . '±NrB" nisei think '= ' .FI " New →o : of ' phase such )h WZW fusion ' ring model ] [ Math - CK Stoppel Adv C 2009 . , . . .

  10. ± Symmetric Frobenius algebras [ Aliyah ZD TQFT Z Zcob Vec Functor : → # ZCSYOZCS 19881 vector with dimV< C On IF )=V* )=V ZCO Z - co ' s spaces : F→z( Z(&÷j§)E Horn ( ) ) multiplication 's ' ZCS ZCSYOZCS 's ZCS 's → m : c.isiZCsyoxzC5s-EZl@1eHomCZCsY0ZCss.ZC , commutative ( ) ab aoxbt ) ) invariant . bilinear form IF a ,bc cab > > < ,c = ' ) ) ' ) ZCO ( unit Horn IF element ) E ZCS s e , I 1 H Z(€YFfE¥c :# partition function ) TQFT : Surface genus g

  11. bosons ZCQ ZD si operator TQFT of - version ) ' ( Fr , ) Vec F=Z[ ' Bmkc End E 9- it ] Bethe Zcssozcs algebra . , p÷j§)eHom( 's ,Zcs 's ) ,Qµ>=£xµ*Fh[ Q×Qµ=FNdi%9* ÷ of ] IF 1- < Qx ) ) )eHom( mica ) ]q ! @ 's ,ZC Z ( ZCSYOZCS . bilinear invariant form nmn imizmz ×= ... ' ) ) O ( Horn ... ,n ) Qx Qx Z ) IF Qcn ( ZCS E = , , unit element EXETER ,§Qx§*)9 ZC :# " Tr ( partition function TQFT ) : surface genus g

  12. bosons ZCQ ZD operator : TQFT of - version 'µY9* ) ' ( Fr , ) Vec E=Z[ ' Bmkc End E 9- it ] Bethe Zcssozcs algebra . , &÷j§)eHom( Q×Qµ= ? Nd ( 's ,Zcs 's ) ,Qµ>=£xµ*Fh[ ÷ of ] IF 1- < Qx ) ) )eHom( mica ) ]q ! @ Z ( ZCSYOZCS 's ZC . , bilinear invariant form , zmz nmn |m ×= ... ' ) ) O ( Horn ... ,n ) Qx Qx Z ) IF Qcn ( ZCS E = , , unit element EXETER ,§Qx§*)9 ZC :# " Tr ( partition function TQFT ) : surface genus g describe terms AIM the time discrete the dynamics of TQFT in :

  13. . operators Q±cv)=§,ovrQ±r Two Q Epn as .PE#EHR*Fi*an cnzz.pitanHRI.ch#Mlpnanggaea* Qtr . . ( Fla. ( of Ian , ( of la ( of Ian Qtr . " . . , identities GZNU " T±M0 Functional N=#ofq bosons 0(u1= - ' 13,16 CK )Q+Cul= Qtcuqijtocu )QHuq ' Tcu ) TQ+ equation , QTuq3+o(uq2)QTuq2 ) Qtutlu QT equation )= ) ' quantum ]=[Q±r,Q±s]=O Qtcu ) Qtuqtj - unq2N Qtcuq 's QTU ) Wronskian ' I = also imply the The functional )°Blk)=BWoBw relations quantum analogue of BH , ) . [ Qtr ,TsI=[ Qtr ,Q 's Cor . ' Bethe ' algebra boson C - of algebra commutative commutative non .

  14. variables with the the . commutative Because quantum are dealing in case we non , the - Baxter eqn equation defining Dfzluiv Dfduiv Esjlvl Ltsjlv Darboux transformation replaced with the Yang is now : ) Ly Lytu lu ) ) ) ) = . Tr Lncul . :L Q± to Tcu , lu ) This define allows similar ) one in a way as = . operators Q± for the 'z± boson [ CK 2016 ] model 2013 of , ' ' fight ) " = ( trim MIMI ija 1 = ( vmqm M * M ) Eons ' , mm . , mm . , . ( formal - boson algebra ) operators Current with coefficients in in power series Trench Qttv v of = Four E QE " explicitly ) Cr ) known = . .

  15. Omitted the from discussion Hall polynomial Ny Combinatorial ( q ) N ,Iu ( OIEZ to compute z [ of 1 approach D e f. ,u = ? ftp.vlq.tl Pvlx ;qH Px ,µ( functions Recall skew ) Macdonald x ; of it : = ? Nstuvlq ) Pv ( x ; q - Whittaker functions x ;q , , o ) Px ,d,µ( 0 ) cylindnc → of - fusion such )r - bosons the WZW D coefficients k=# off are - ,o such ) tilting lens or category of Ko ( ) I E E TQFT Ue modules g=o , = el "k+h with ( ) QFT Chern . Simons e : interpretation Geometric at ? → to of

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend