dingo design study
play

DINGO: Design Study Martin Meyer, Arniston, 2010 Image credit: - PowerPoint PPT Presentation

DINGO: Design Study Martin Meyer, Arniston, 2010 Image credit: Swinburne DINGO Team Martin Meyer (PI, ICRAR) Adam Muzzin (Yale) Peder Norberg (ROE) Ivan Baldry (LJMU) Ray Norris (ATNF) Steven Bamford (Nottingham) Roderik Overzier (MPA)


  1. DINGO: Design Study Martin Meyer, Arniston, 2010 Image credit: Swinburne

  2. DINGO Team Martin Meyer (PI, ICRAR) Adam Muzzin (Yale) Peder Norberg (ROE) Ivan Baldry (LJMU) Ray Norris (ATNF) Steven Bamford (Nottingham) Roderik Overzier (MPA) Sarah Blyth (UCT) John Peacock (ROE) Antoine Bouchard (UCT) Ue-Li Pen (Toronto) Robert Braun (ATNF) Peter Quinn (ICRAR) Michael Brown (Monash) Steve Rawlings (Oxford) Alan Duffy (ICRAR) Emma Ryan-Weber (Swinburne) Loretta Dunne (Nottingham) Elaine Sadler (Sydney) Simon Driver (St Andrews) Lister Staveley-Smith (ICRAR) Steve Eales (Cardiff) Jamie Stevens (UTas) Tim Heckman (JHU) Kurt van der Heyden (UCT) Trish Henning (UNM) Brad Warren (ICRAR) Benne Holwerda (UCT) Michael Warren (LANL) Andrew Hopkins (AAO) Tobias Westmeier (ATNF) Matt Jarvis (Hertfordshire) Matthew Whiting (ATNF) Virginia Kilborn (Swinburne) Baerbel Koribalski (ATNF) Chris Willott (CADC) Joe Liske (ESO) Ivy Wong (Yale) Jon Loveday (Sussex) Martin Zwaan (ESO) Gerhardt Meurer (ICRAR)

  3. Goals • How does the distribution of How Does How Does Ω HI HI in the universe evolve? the HI Cosmic Evolve? • What factors does this Web Evolve? depend on? (environment, halo mass etc) • How does the cosmic density of HI evolve? DINGO Science • How do we explain Ω HI • What regulates the baryonic Questions cf. Ω SFR ? processes in galaxies? ( multiwavelength ) • What star formation cosmic density efficiencies and gas infall What SFR rates are required? Drives Galaxy • What are the halo properties Formation and of gas-rich galaxies? HI stars Evolution? • How does the Tully-Fisher z relation evolve?

  4. DINGO Observations • Deep : 150 deg 2 , 0 < z< 0.26, 500 hours/pointing • Ultradeep : 60 deg 2 , 0.1 < z< 0.43, 2500 hours/pointing Redshift Redshift 0 0 0.0 0.2 0.4 0.6 0.8 1.0 2.0 3.0 4.0 0 1 2 3 4 5 6 7 8 9 10 11 12 Lookback Time (Gyrs) Lookback time (Gyr)

  5. 0.4 < z < 1.0 • Deep : 150 deg 2 , 0 < z< 0.26, 500 hours/pointing • Ultradeep : 60 deg 2 , 0.1 < z< 0.43, 2500 hours/pointing • Ultradeep high-z : 30 deg 2 , 0.4 < z < 1, 2500 hours/pointing Redshift Redshift 0 0 0.0 0.2 0.4 0.6 0.8 1.0 2.0 3.0 4.0 0 1 2 3 4 5 6 7 8 9 10 11 12 Lookback Time (Gyrs)

  6. Blind HI Pathfinder Surveys DINGO DINGO MeerKAT MeerKAT WALLABY Deep Ultradeep Ultradeep I Ultradeep II Area ~30,000 deg 2 150 deg 2 60 deg 2 2+ deg 2 1+ deg 2 Hours/Field 8 500 2500 1000 4000 Detections 5x10 5 ~6x10 4 ~6x10 4 ~10 4 ~2x10 4 Redshift z<0.26 0.0<z<0.26 0.1<z<0.43 0<z<0.58 0<z<1.4 2,048x2,048 2,048x2,048 2,048x2,048 1,800x1,800 1,800x1,800 Cube Pixels (10”) (10”) (10”) (2”) (2”) 16,384 16,384 16,384 Cube Channels 16,384 16,384 (4 km s -1 ) (4 km s -1 ) (4 km s -1 ) Observations 1200 (330 TB) 250 (69 TB) 500 (138 TB) 200 (40 TB) 400 (80 TB) (~10hr) Final Cubes 1200 (330 TB) 5 (1.38 TB) 2 (550 GB) 2 (400 GB) 1 (200 GB)

  7. Blind HI Pathfinder Surveys DINGO DINGO MeerKAT MeerKAT WALLABY Deep Ultradeep Ultradeep I Ultradeep II Area ~30,000 deg 2 150 deg 2 60 deg 2 2+ deg 2 1+ deg 2 Hours/Field 8 500 2500 1000 4000 Detections 5x10 5 ~6x10 4 ~6x10 4 ~10 4 ~2x10 4 Redshift z<0.26 0.0<z<0.26 0.1<z<0.43 0<z<0.58 0<z<1.4 2,048x2,048 8,192x8,192 8,192x8,192 1,800x1,800 1,800x1,800 Cube Pixels (10”) (10” ➔ 3”) (10” ➔ 3”) (2”) (2”) 16,384 16,384 16,384 Cube Channels 16,384 16,384 (4 km s -1 ) (4 km s -1 ) (4 km s -1 ) Observations 1200 (330 TB) 250 (1.1 PB) 500 (2.2 PB) 200 (40 TB) 400 (80 TB) (~10hr) Final Cubes 1200 (330 TB) 5 (22 TB) 2 (8.8 TB) 2 (400 GB) 1 (200 GB)

  8. HI Survey Areas and Sensitivities Redshift Redshift 0.0 0.2 0.4 0.6 0.8 1.0 2.0 3.0 4.0 z limits Wallaby 1000 1000 Dingo Deep Area (deg 2 ) 100 100 MeerKAT Ultradeep I Adapted from Driver et al. Dingo Ultradeep 10 10 1 1 MeerKAT Ultradeep II 0.1 0.1 0 2 4 6 8 10 12 Lookback Time (Gyrs) Lookback time [Gyrs]

  9. HI Survey Areas and Sensitivities Redshift Redshift 0.0 0.2 0.4 0.6 0.8 1.0 2.0 3.0 4.0 z limits Wallaby M HI * detection limit 1000 1000 Dingo Deep Area (deg 2 ) 100 100 MeerKAT Ultradeep I Adapted from Driver et al. Dingo Ultradeep 10 10 1 1 MeerKAT Ultradeep II 0.1 0.1 0 2 4 6 8 10 12 Lookback Time (Gyrs) Lookback time [Gyrs]

  10. GAMA - the Multiwavelength Data

  11. GAMA Redshifts Redshift Redshift 0.0 0.2 0.4 0.6 0.8 1.0 2.0 3.0 4.0 15 15 10 10 5 5 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 Lookback Time (Gyrs) Lookback time (Gyr)

  12. GAMA Redshifts GAMA I z-survey finishes this year! 3 4x12 deg 2 regions: Redshift • GAMA09 r<19.4 • GAMA12 r<19.8 • GAMA15 r<19.4 115K redshifts Driver et al.

  13. Field Selection Dec 0 0 Dec -50 0

  14. Field Selection GAMA II AAT large programme submitted Mar 2010

  15. GAMA Redshifts GAMA I GAMA II Survey 4x12 deg 2 6x12 deg 2 Blocks 3: 9h, 12h, 5: 9h, 12h, Fields 15h 15h, 2h, 23h Targets 115 000 330 000 r < 19.4 144 deg 2 360 deg 2 r < 19.8 48 deg 2 360 deg 2 Proposed Current (174 nights)

  16. GAMA Redshifts Ultradeep GAMA I GAMA II z’s Survey 4x12 deg 2 6x12 deg 2 6x12 deg 2 Blocks 3: 9h, 12h, 5: 9h, 12h, 5: 9h, 12h, Fields 15h 15h, 2h, 23h 15h, 2h, 23h Targets 115 000 330 000 330 000+ r < 19.4 144 deg 2 360 deg 2 360 deg 2 r < 19.8 48 deg 2 360 deg 2 360 deg 2 r < 21 0 deg 2 0 deg 2 60 deg 2 Proposed Current (174 nights) Future?

  17. Field Selection: AB SUMSS: 0.5 < St < 1 Jy 12 SUMMS: St > 1 Jy PKSCAT90: 0.5 < S1410 < 1 Jy 10 PKSCAT90: S1410 > 1 Jy NVSS: 0.5 < S1.4 < 1 Jy 8 NVSS: S1.4 > 1 Jy NVSS All 6 4 Dec J2000 (deg) 2 Fields A&B 0 -2 -4 -6 -8 -10 -12 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 RA J2000 (deg)

  18. Field Selection: CD SUMSS: 0.5 < St < 1 Jy 12 SUMMS: St > 1 Jy PKSCAT90: 0.5 < S1410 < 1 Jy 10 PKSCAT90: S1410 > 1 Jy NVSS: 0.5 < S1.4 < 1 Jy 8 NVSS: S1.4 > 1 Jy NVSS All 6 4 Dec J2000 (deg) 2 Fields C&D 0 -2 -4 -6 -8 -10 -12 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 RA J2000 (deg)

  19. Field Selection: EF SUMSS: 0.5 < St < 1 Jy 12 SUMMS: St > 1 Jy PKSCAT90: 0.5 < S1410 < 1 Jy 10 PKSCAT90: S1410 > 1 Jy NVSS: 0.5 < S1.4 < 1 Jy 8 NVSS: S1.4 > 1 Jy NVSS All 6 4 Dec J2000 (deg) 2 Fields E&F 0 -2 -4 -6 -8 -10 -12 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 RA J2000 (deg)

  20. Field Selection: GH -20 SUMSS: 0.5 < St < 1 Jy SUMMS: St > 1 Jy -22 PKSCAT90: 0.5 < S1410 < 1 Jy PKSCAT90: S1410 > 1 Jy -24 NVSS: 0.5 < S1.4 < 1 Jy NVSS: S1.4 > 1 Jy -26 NVSS All -28 -30 Dec J2000 (deg) Fields G&H -32 -34 -36 -38 -40 -42 -44 -46 325 330 335 340 345 350 355 RA J2000 (deg)

  21. Field Selection: LM -20 SUMSS: 0.5 < St < 1 Jy SUMMS: St > 1 Jy -22 PKSCAT90: 0.5 < S1410 < 1 Jy PKSCAT90: S1410 > 1 Jy -24 NVSS: 0.5 < S1.4 < 1 Jy NVSS: S1.4 > 1 Jy -26 NVSS All -28 -30 Dec J2000 (deg) Fields L&M -32 -34 -36 -38 -40 -42 -44 -46 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 RA J2000 (deg)

  22. Evolution of Ω (HI) - AUDS Freudling, Staveley-Smith 10

  23. A stacked HI signal at z=0.1 with Parkes (GAMA9 field; Delhaize et al.) randomized catalogue

  24. GAMA HI Stacking Delhaize

  25. Where to from here? • examine various evolutionary scenarios Simulations Duffy, Whiting • ‘observe’ simulated data (eg. ASKAPsoft) • RFI, cube combination methodology Pipeline Processing • highest resolution data cubes possible? Jurek, Westmeier • DuChamp/new software Source Finding • parametrization, completeness and reliability • how well are stated science goals met? Science Analysis • results consistent with best deep datasets? • cosmic variance Ongoing, SSFs! • GAMA progress GAMA II submitted Ancillary Datasets • optical spectroscopy 1st dish on-site! • receiver performance and stability, dynamic range, calibration accuracy, bandpass stability, BETA noise characteristics, sidelobe response...

  26. Super Science Fellows • ICRAR awarded 5 ‘Super Science Fellowships’ • 2 positions for DINGO/ WALLABY related work: ‣ deep HI science simulations ‣ multiwavelength analysis • 3 year, ECR postdoctoral positions w/ excellent research support • Will appear in June AAS listings, application deadline July 2010

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend