dimension reduction analysis and algorithms
play

Dimension Reduction: Analysis and Algorithms Raz Kupferman - PowerPoint PPT Presentation

Dimension Reduction: Analysis and Algorithms Raz Kupferman Institute of Mathematics The Hebrew University ( based on a review with A. Stuart ) Instructions for Audience Ive nagged speakers for 2.5 days. Now you have the opportunity to take


  1. Attracting Manifolds Goes back to Tikhonov ( East ) and Levinson ( W est ) . Starting point: ODEs with scale separations: dt = 1 dx dy dt = f ( x, y ) ǫ g ( x, y ) Assumption: for every fixed x , the y - dynamics has a unique attracting fixed point , y= η ( x ) . Up to mild regularity assumptions on f , g , it can be shown that y ( t ) = η ( x ( t )) + O ( ε ) . To O ( ε ) corrections, x ( t ) is approximated by the solution X ( t ) of the reduced equation: dX dt = f ( X, η ( X ))

  2. Attracting Manifolds Goes back to Tikhonov ( East ) and Levinson ( W est ) . Starting point: ODEs with scale separations: dt = 1 dx dy dt = f ( x, y ) ǫ g ( x, y ) Assumption: for every fixed x , the y - dynamics has a unique attracting fixed point , y= η ( x ) . Up to mild regularity assumptions on f , g , it can be shown that y ( t ) = η ( x ( t )) + O ( ε ) . To O ( ε ) corrections, x ( t ) is approximated by the solution X ( t ) of the reduced equation: dX dt = f ( X, η ( X )) Systems of class DD

  3. y Actual trajectory η ( x ) y - dynamics “slaved” to x - dynamics attracting manifold x

  4. Example : dx 1 dt = − x 2 − x 3 dx 2 dt = x 1 + 1 5 x 2 dx 3 dt = 1 5 + y − 5 x 3 dy dt = − y ǫ + x 1 x 3 ǫ

  5. Example : dx 1 dt = − x 2 − x 3 dx 2 dt = x 1 + 1 5 x 2 dx 3 dt = 1 5 + y − 5 x 3 dy dt = − y ǫ + x 1 x 3 ǫ For fixed x y → x 1 x 3

  6. Example : Reduced dynamics: dx 1 dt = − x 2 − x 3 dX 1 = − X 2 − X 3 dx 2 dt = x 1 + 1 dt 5 x 2 dX 2 = X 1 + 1 5 X 2 dx 3 dt = 1 dt 5 + y − 5 x 3 = 1 dX 3 5 + ( X 1 − 5) X 3 dy dt = − y ǫ + x 1 x 3 dt ǫ Rössler system For fixed x y → x 1 x 3

  7. Example : Reduced dynamics: dx 1 dt = − x 2 − x 3 dX 1 = − X 2 − X 3 dx 2 dt = x 1 + 1 dt 5 x 2 dX 2 = X 1 + 1 5 X 2 dx 3 dt = 1 dt 5 + y − 5 x 3 = 1 dX 3 5 + ( X 1 − 5) X 3 dy dt = − y ǫ + x 1 x 3 dt ǫ Rössler system For fixed x y → x 1 x 3 Atrractor. ε =0.01 8 6 4 2 0 x 2 − 2 − 4 − 6 − 8 − 10 − 8 − 6 − 4 − 2 0 2 4 6 8 10 x 1 ǫ = 0 . 01

  8. Example : Reduced dynamics: dx 1 dt = − x 2 − x 3 dX 1 = − X 2 − X 3 dx 2 dt = x 1 + 1 dt 5 x 2 dX 2 = X 1 + 1 5 X 2 dx 3 dt = 1 dt 5 + y − 5 x 3 = 1 dX 3 5 + ( X 1 − 5) X 3 dy dt = − y ǫ + x 1 x 3 dt ǫ Rössler system For fixed x y → x 1 x 3 Atrractor. ε =0.01 Attractor. 8 8 6 6 4 4 2 2 0 0 X 2 x 2 − 2 −2 − 4 −4 − 6 −6 − 8 −8 − 10 −10 − 8 − 6 − 4 − 2 0 2 4 6 8 10 −8 −6 −4 −2 0 2 4 6 8 10 x 1 X 1 ǫ = 0 . 01

  9. Averaging First used in 3 - body celestial mechanics ( Lagrange 1788 ) . dt = 1 dx dy dt = f ( x, y ) ǫ g ( x, y )

  10. Averaging First used in 3 - body celestial mechanics ( Lagrange 1788 ) . dt = 1 dx dy dt = f ( x, y ) ǫ g ( x, y ) Assumption : for fixed x , the y - dynamics are ergodic . Let denote the solution operator of the y - dynamics: ϕ t x ( y ) d ϕ 0 dt ϕ t x ( y ) = g ( x, ϕ t x ( y )) x ( y ) = y

  11. Averaging First used in 3 - body celestial mechanics ( Lagrange 1788 ) . dt = 1 dx dy dt = f ( x, y ) ǫ g ( x, y ) Assumption : for fixed x , the y - dynamics are ergodic . Let denote the solution operator of the y - dynamics: ϕ t x ( y ) d ϕ 0 dt ϕ t x ( y ) = g ( x, ϕ t x ( y )) x ( y ) = y oung measure on Y : Ergodic dynamics induce a Y � T I A ( ϕ t µ x ( A ) = lim x ( y )) dt T →∞ 0 independent of y measure depends on x indicator function

  12. Averaging ( cont. ) Anosov’s theorem states that x ( t ) converges uniformly on any bounded time interval to the solution X ( t ) of the averaged equation : dX � dt = f ( X, y ) µ X ( dy ) class DD Y

  13. Averaging ( cont. ) Anosov’s theorem states that x ( t ) converges uniformly on any bounded time interval to the solution X ( t ) of the averaged equation : dX � dt = f ( X, y ) µ X ( dy ) class DD Y Comments :

  14. Averaging ( cont. ) Anosov’s theorem states that x ( t ) converges uniformly on any bounded time interval to the solution X ( t ) of the averaged equation : dX � dt = f ( X, y ) µ X ( dy ) class DD Y Comments : • Extensive literature ( mostly Russian ) .

  15. Averaging ( cont. ) Anosov’s theorem states that x ( t ) converges uniformly on any bounded time interval to the solution X ( t ) of the averaged equation : dX � dt = f ( X, y ) µ X ( dy ) class DD Y Comments : • Extensive literature ( mostly Russian ) . • Extension to cases where ergodicity fails on su ffi ciently small sets ( Arnold , Neistadt ) .

  16. Averaging ( cont. ) Anosov’s theorem states that x ( t ) converges uniformly on any bounded time interval to the solution X ( t ) of the averaged equation : dX � dt = f ( X, y ) µ X ( dy ) class DD Y Comments : • Extensive literature ( mostly Russian ) . • Extension to cases where ergodicity fails on su ffi ciently small sets ( Arnold , Neistadt ) . • Extension to non - autonomous systems ( Artstein ) .

  17. Averaging ( cont. ) Anosov’s theorem states that x ( t ) converges uniformly on any bounded time interval to the solution X ( t ) of the averaged equation : dX � dt = f ( X, y ) µ X ( dy ) class DD Y Comments : • Extensive literature ( mostly Russian ) . • Extension to cases where ergodicity fails on su ffi ciently small sets ( Arnold , Neistadt ) . • Extension to non - autonomous systems ( Artstein ) . • Extension to non - unique invariant measure ( di ff erential inclusions, Artstein ) .

  18. Averaging ( cont. ) Anosov’s theorem states that x ( t ) converges uniformly on any bounded time interval to the solution X ( t ) of the averaged equation : dX � dt = f ( X, y ) µ X ( dy ) class DD Y Comments : • Extensive literature ( mostly Russian ) . • Extension to cases where ergodicity fails on su ffi ciently small sets ( Arnold , Neistadt ) . • Extension to non - autonomous systems ( Artstein ) . • Extension to non - unique invariant measure ( di ff erential inclusions, Artstein ) . • Invariant measure may depend on y ( 0 ) .

  19. Application: Sti ff Hamiltonian Systems Ubiquitous in molecular systems: Hamiltonian systems with strong potential forces resuling in fast oscillatory motion around a sub - manifold, along with weaker forces responsible for conformational changes over longer timescales ( Rubin and Ungar, 1957, Neistadt 1984, Bornemann and Schuette 1997 ) . p 2 H ( z, p ) = 1 + V ( z ) + 1 � i ǫ 2 U ( z ) 2 2 m i i “soft” potential “sti fg ” potential The sti ff potential is minimal on a smooth submanifold M . Goal : approximate solution by a flow on M .

  20. Example : a two - particle system constraining manifold y=0 2( p 2 + v 2 ) + V ( x ) + ω 2 ( x ) H ( x, p, y, v ) = 1 2 ǫ 2 y 2

  21. Example : a two - particle system constraining manifold y=0 2( p 2 + v 2 ) + V ( x ) + ω 2 ( x ) H ( x, p, y, v ) = 1 2 ǫ 2 y 2 Equations of motion: dx dt = p dt = − V ′ ( x ) − ω ′ ( x ) dp 2 ǫ 2 y 2 dy dt = v ratio of small parameters dt = − ω ( x ) dv ǫ 2 y

  22. Example : a two - particle system constraining manifold y=0 2( p 2 + v 2 ) + V ( x ) + ω 2 ( x ) H ( x, p, y, v ) = 1 2 ǫ 2 y 2 Equations of motion: dx dt = p dt = − V ′ ( x ) − ω ′ ( x ) dp 2 ǫ 2 y 2 dy dt = v ratio of small parameters dt = − ω ( x ) dv ǫ 2 y Assumption : energy E does not depend on ε , hence y → 0 as ε → 0 .

  23. Example : a two - particle system constraining manifold y=0 2( p 2 + v 2 ) + V ( x ) + ω 2 ( x ) H ( x, p, y, v ) = 1 2 ǫ 2 y 2 Equations of motion: Naive solution: set y=0 . Wrong! dx dt = p dt = − V ′ ( x ) − ω ′ ( x ) dp 2 ǫ 2 y 2 dy dt = v ratio of small parameters dt = − ω ( x ) dv ǫ 2 y Assumption : energy E does not depend on ε , hence y → 0 as ε → 0 .

  24. Example : a two - particle system constraining manifold y=0 2( p 2 + v 2 ) + V ( x ) + ω 2 ( x ) H ( x, p, y, v ) = 1 2 ǫ 2 y 2 Equations of motion: Naive solution: set y=0 . Wrong! dx dt = p dt = − V ′ ( x ) − ω ′ ( x ) dp 2 ǫ 2 y 2 This system is still not dy in the desired form of dt = v ratio of small parameters scale separation because dt = − ω ( x ) dv ǫ 2 y the “slow” ( x,p ) equations depend on ε . Assumption : energy E does not depend on ε , hence y → 0 as ε → 0 . Change variables: η = y / ε .

  25. T ransformed system of equations: dx dt = p dt = − V ′ ( x ) − ω ′ ( x ) dp η 2 slow 2 dt = 1 d η fast ǫ v dt = − ω ( x ) dv η ǫ

  26. T ransformed system of equations: dx The y - dynamics are ergodic : dt = p ( harmonic oscillator with dt = − V ′ ( x ) − ω ′ ( x ) dp η 2 x - dependent frequency ) . slow 2 dt = 1 d η fast ǫ v The invariant measure dt = − ω ( x ) dv η depends on the total energy ( i.e., ǫ on initial data of full system ) .

  27. T ransformed system of equations: dx The y - dynamics are ergodic : dt = p ( harmonic oscillator with dt = − V ′ ( x ) − ω ′ ( x ) dp η 2 x - dependent frequency ) . slow 2 dt = 1 d η fast ǫ v The invariant measure dt = − ω ( x ) dv η depends on the total energy ( i.e., ǫ on initial data of full system ) . Applying the averaging principle ( here, a variation of Anosov’s theorem ) constant depending on dX dt = P initial data dP dt = − V ′ ( X ) − J ( ω 1 / 2 ( X )) ′ e fg ective ( Fixman ) potential ( non - trivial )

  28. Stochastic Averaging A ( relatively ) strightforward generalizartion of the averaging method to stochastic systems: dx dt = f ( x, y ) dt = 1 ǫ g ( x, y ) + 1 dy √ ǫβ ( x, y ) dV dt

  29. Stochastic Averaging A ( relatively ) strightforward generalizartion of the averaging method to stochastic systems: dx dt = f ( x, y ) dt = 1 ǫ g ( x, y ) + 1 dy √ ǫβ ( x, y ) dV dt If for fixed x the y - dynamics is ergodic with invariant measure μ x ( dy ) , then as ε → 0 , x ( t ) converges uniformly to X ( t ) : dX � dt = f ( X, y ) µ X ( dy ) class SD Y

  30. Sketch of proof ( asymptotic analysis can be backed up by a limit theorem ) : dx dt = f ( x, y ) dt = 1 ǫ g ( x, y ) + 1 dy √ ǫβ ( x, y ) dV dt

  31. Sketch of proof ( asymptotic analysis can be backed up by a limit theorem ) : dx dt = f ( x, y ) dt = 1 ǫ g ( x, y ) + 1 dy √ ǫβ ( x, y ) dV dt Step 1 : write corresponding Kolmogorov ( Fokker - Planck ) equation for φ ( x,y,t ) : ∂ 2 − 1 ∂ y ( g φ ) + 1 ∂φ ∂ t = − ∂ ∂ � β 2 φ � ∂ x ( f φ ) ∂ y 2 ǫ ǫ � �� � � �� � L 1 φ 1 ǫ L 0 φ

  32. Sketch of proof ( asymptotic analysis can be backed up by a limit theorem ) : dx dt = f ( x, y ) dt = 1 ǫ g ( x, y ) + 1 dy √ ǫβ ( x, y ) dV dt Step 1 : write corresponding Kolmogorov ( Fokker - Planck ) equation for φ ( x,y,t ) : ∂ 2 − 1 ∂ y ( g φ ) + 1 ∂φ ∂ t = − ∂ ∂ � β 2 φ � ∂ x ( f φ ) ∂ y 2 ǫ ǫ � �� � � �� � L 1 φ 1 ǫ L 0 φ Step 2 : power series expansion: φ ( x, y, t ) = φ 0 ( x, y, t ) + ǫ φ 1 ( x, y, t ) + . . .

  33. Step 3 : equate terms of same order: O ( 1/ ε ) terms : L 0 φ 0 = 0 ∂ 2 ∂ y ( g φ ) + 1 L 0 φ = − ∂ ∂ y 2 ( β 2 φ ) the generator of the y - dynamics 2 invariant distribution solution: φ 0 ( x, y, t ) = π ( x, t ) φ x eq ( y ) of y - dynamics

  34. Step 3 : equate terms of same order: O ( 1/ ε ) terms : L 0 φ 0 = 0 ∂ 2 ∂ y ( g φ ) + 1 L 0 φ = − ∂ ∂ y 2 ( β 2 φ ) the generator of the y - dynamics 2 invariant distribution solution: φ 0 ( x, y, t ) = π ( x, t ) φ x eq ( y ) of y - dynamics L 0 φ 1 = ∂φ 0 O ( 1 ) terms : ∂ t − L 1 φ 0 L 1 φ = − ∂ ∂ x ( f φ ) the generator of the x - dynamics

  35. Step 3 : equate terms of same order: O ( 1/ ε ) terms : L 0 φ 0 = 0 ∂ 2 ∂ y ( g φ ) + 1 L 0 φ = − ∂ ∂ y 2 ( β 2 φ ) the generator of the y - dynamics 2 invariant distribution solution: φ 0 ( x, y, t ) = π ( x, t ) φ x eq ( y ) of y - dynamics L 0 φ 1 = ∂φ 0 O ( 1 ) terms : ∂ t − L 1 φ 0 L 1 φ = − ∂ ∂ x ( f φ ) the generator of the x - dynamics Solvability condition : right - hand side orthogonal to the kernel of L 0* ( constant functions ) . Integrate over y : � �� �� ∂π ∂ t = − ∂ π ( x, t ) f ( x, y ) φ x eq ( y ) dy ∂ x

  36. � �� �� ∂π ∂ t = − ∂ π ( x, t ) f ( x, y ) φ x eq ( y ) dy ∂ x Step 4 : W e identify this equation as the Liouville equation of the deterministic system dX � f ( X, y ) φ X dt = eq ( y ) dy ≡ F ( X )

  37. � �� �� ∂π ∂ t = − ∂ π ( x, t ) f ( x, y ) φ x eq ( y ) dy ∂ x Step 4 : W e identify this equation as the Liouville equation of the deterministic system dX � f ( X, y ) φ X dt = eq ( y ) dy ≡ F ( X ) This asymptotic expansion can be made into a rigorous convergence proof ( e.g., through limit theorem for semi - groups ) .

  38. Stochastic Limits A more subtle case of scale - separated system occurs for the following scaling: x - equation contains a “fast” term dt = 1 dx √ ǫ f 0 ( x, y ) + f 1 ( x, y ) dt = 1 ǫ g ( y ) + 1 dy √ ǫβ ( y ) dV dt y - equation independent of x ( skew - symmetric, not essential )

  39. Stochastic Limits A more subtle case of scale - separated system occurs for the following scaling: x - equation contains a “fast” term dt = 1 dx √ ǫ f 0 ( x, y ) + f 1 ( x, y ) dt = 1 ǫ g ( y ) + 1 dy √ ǫβ ( y ) dV dt y - equation independent of x ( skew - symmetric, not essential ) The setting is such that f 0 ( x,y ) averages to zero under the invariant measure of the y - dynamics. A large term that averages to zero becomes, as ε → 0 , white noise .

  40. Asymptotic expansion Step 1 : Switch to the Kolmogorov equation: ∂φ ∂ t = 1 ǫ L 0 φ + 1 √ ǫ L 1 φ + L 2 φ L 1 φ = − ∂ L 2 φ = − ∂ ∂ 2 ∂ y ( g φ ) + 1 L 0 φ = − ∂ ∂ y 2 ( β 2 φ ) ∂ x ( f 0 φ ) ∂ x ( f 1 φ ) 2

  41. Asymptotic expansion Step 1 : Switch to the Kolmogorov equation: ∂φ ∂ t = 1 ǫ L 0 φ + 1 √ ǫ L 1 φ + L 2 φ L 1 φ = − ∂ L 2 φ = − ∂ ∂ 2 ∂ y ( g φ ) + 1 L 0 φ = − ∂ ∂ y 2 ( β 2 φ ) ∂ x ( f 0 φ ) ∂ x ( f 1 φ ) 2 Step 2 : Asymptotic series expansion: φ ( x, y, t ) = φ 0 ( x, y, t ) + √ ǫφ 1 ( x, y, t ) + ǫφ 2 ( x, y, t ) + . . .

  42. Asymptotic expansion Step 1 : Switch to the Kolmogorov equation: ∂φ ∂ t = 1 ǫ L 0 φ + 1 √ ǫ L 1 φ + L 2 φ L 1 φ = − ∂ L 2 φ = − ∂ ∂ 2 ∂ y ( g φ ) + 1 L 0 φ = − ∂ ∂ y 2 ( β 2 φ ) ∂ x ( f 0 φ ) ∂ x ( f 1 φ ) 2 Step 2 : Asymptotic series expansion: φ ( x, y, t ) = φ 0 ( x, y, t ) + √ ǫφ 1 ( x, y, t ) + ǫφ 2 ( x, y, t ) + . . . Step 3 : Equate terms of same order O ( 1/ ε ) terms : L 0 φ 0 = 0 solution: φ 0 ( x, y, t ) = π ( x, t ) φ eq ( y )

  43. L 0 φ 1 = − L 1 φ 0 O ( 1/ √ ε ) terms : Solvability condition requires that integral of RHS be zero. RHS = ∂ ∂ x [ f 0 ( x, y ) φ eq ( y ) π ( x, t )] This follows from the properties of f 0 . φ 1 = − L − 1 Solution: 0 L 1 φ 0

  44. L 0 φ 1 = − L 1 φ 0 O ( 1/ √ ε ) terms : Solvability condition requires that integral of RHS be zero. RHS = ∂ ∂ x [ f 0 ( x, y ) φ eq ( y ) π ( x, t )] This follows from the properties of f 0 . φ 1 = − L − 1 Solution: 0 L 1 φ 0 L 0 φ 2 = ∂φ 0 O ( 1 ) terms : ∂ t − L 1 φ 1 − L 2 φ 0 Again, apply same solvability condition, and obtain an equation for the ( leading order ) marginal π( x,t ) : ∂π � � L 1 L − 1 ∂ t = − 0 L 1 φ eq ( y ) π ( x, t ) dy + L 2 φ eq ( y ) π ( x, t ) dy

  45. Step 4 : identification of reduced problem: di fg usion drift ∂π � � L 1 L − 1 ∂ t = − 0 L 1 φ eq ( y ) π ( x, t ) dy + L 2 φ eq ( y ) π ( x, t ) dy operator in y first - order operator in x

  46. Step 4 : identification of reduced problem: di fg usion drift ∂π � � L 1 L − 1 ∂ t = − 0 L 1 φ eq ( y ) π ( x, t ) dy + L 2 φ eq ( y ) π ( x, t ) dy operator in y first - order operator in x W e identify the equation for the marginal π( x,t ) as a Kolmogorov equation of a di fg usion process X ( t ) . The drift and di ff usion may be di ffi cult to evaluate analytically due to the need to invert L 0 .

  47. f 0 ( x,y ) f 1 ( x,y ) dx dt = 1 Example : √ ǫ yx − λ x dy dt = − 1 ǫ y + 1 dV √ ǫ dt Ornstein - Uhlenbeck process

  48. f 0 ( x,y ) f 1 ( x,y ) dx dt = 1 Example : √ ǫ yx − λ x dy dt = − 1 ǫ y + 1 dV √ ǫ dt Ornstein - Uhlenbeck process 1 ∂ 2 φ ∂ y ( y φ ) + 1 L 0 φ = ∂ √ π e − y 2 φ eq ( y ) = 2 ∂ y 2

  49. f 0 ( x,y ) f 1 ( x,y ) dx dt = 1 Example : √ ǫ yx − λ x dy dt = − 1 ǫ y + 1 dV √ ǫ dt Ornstein - Uhlenbeck process 1 ∂ 2 φ ∂ y ( y φ ) + 1 L 0 φ = ∂ √ π e − y 2 φ eq ( y ) = 2 ∂ y 2 L 1 φ = − y ∂ ∂ x ( x φ ) L 2 φ = λ ∂ ∂ x ( x φ )

  50. f 0 ( x,y ) f 1 ( x,y ) dx dt = 1 Example : √ ǫ yx − λ x dy dt = − 1 ǫ y + 1 dV √ ǫ dt Ornstein - Uhlenbeck process 1 ∂ 2 φ ∂ y ( y φ ) + 1 L 0 φ = ∂ √ π e − y 2 φ eq ( y ) = 2 ∂ y 2 L 1 φ = − y ∂ ∂ x ( x φ ) L 2 φ = λ ∂ ∂ x ( x φ ) Everything can be calculated analytically. ∂ 2 �� 1 � � ∂π ∂ t = − ∂ + 1 x 2 π � � 2 − λ x π ∂ x 2 ∂ x 2 Reduced Kolmogorov equation

  51. f 0 ( x,y ) f 1 ( x,y ) dx dt = 1 Example : √ ǫ yx − λ x dy dt = − 1 ǫ y + 1 dV √ ǫ dt Ornstein - Uhlenbeck process 1 ∂ 2 φ ∂ y ( y φ ) + 1 L 0 φ = ∂ √ π e − y 2 φ eq ( y ) = 2 ∂ y 2 L 1 φ = − y ∂ ∂ x ( x φ ) L 2 φ = λ ∂ ∂ x ( x φ ) Everything can be calculated analytically. � 1 � ∂ 2 �� 1 � � dX X + X dU ∂π ∂ t = − ∂ + 1 x 2 π � � 2 − λ x π 2 − λ dt = ∂ x 2 ∂ x dt 2 Reduced Kolmogorov equation Reduced SDE

  52. Original system: dx dt = 1 √ ǫ yx − λ x dy dt = − 1 ǫ y + 1 dV √ ǫ dt Reduced system: � 1 � dX X + X dU 2 − λ dt = dt class SS

  53. Original system: Solution of reduced system: dx dt = 1 X ( t ) = X (0) exp [ − λ t + U ( t )] √ ǫ yx − λ x dy dt = − 1 ǫ y + 1 dV √ ǫ Properties ( a.s ) : dt Reduced system: λ > 0 t →∞ X ( t ) = 0 lim → � 1 � dX X + X dU λ = 0 lim sup t →∞ X ( t ) = ∞ → 2 − λ dt = dt λ < 0 t →∞ X ( t ) = ∞ lim → class SS

  54. Original system: Solution of reduced system: dx dt = 1 X ( t ) = X (0) exp [ − λ t + U ( t )] √ ǫ yx − λ x dy dt = − 1 ǫ y + 1 dV √ ǫ Properties ( a.s ) : dt Reduced system: λ > 0 t →∞ X ( t ) = 0 lim → � 1 � dX X + X dU λ = 0 lim sup t →∞ X ( t ) = ∞ → 2 − λ dt = dt λ < 0 t →∞ X ( t ) = ∞ lim → class SS Numerical solution of log x ( t ) for ε =0.1 . λ = − 1 ε = 0.1 λ = 0 ε = 0.1 λ = 1 ε = 0.1 120 8 20 λ = - 1 λ =1 100 6 0 80 4 − 20 60 2 − 40 log(x) log(x) log(x) 40 0 − 60 20 − 2 − 80 λ =0 0 − 4 − 100 − 20 − 6 − 120 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 time time time

  55. Example of Class DS x - equation contains a W e dealt with “fast” term systems of the dt = 1 dx √ ǫ f 0 ( x, y ) + f 1 ( x, y ) following form that yields dt = 1 ǫ g ( y ) + 1 dy √ ǫβ ( y ) dV dimension dt reduction of y - equation independent class SS . of x ( skew - symmetric, not essential )

  56. Example of Class DS x - equation contains a W e dealt with “fast” term systems of the dt = 1 dx √ ǫ f 0 ( x, y ) + f 1 ( x, y ) following form that yields dt = 1 ǫ g ( y ) + 1 dy √ ǫβ ( y ) dV dimension dt reduction of y - equation independent class SS . of x ( skew - symmetric, not essential ) The same type of arguments remain valid if the y - dynamics are deterministic, but su ffi ciently - well mixing .

  57. Example : fast term that 4 dx dt = x − x 3 + averages to zero 90 √ ǫ y 2 dt = 10 dy 1 y ( t ) satisfying ǫ ( y 2 − y 1 ) the ( accelerated ) dt = 1 dy 2 chaotic Lorenz ǫ (28 y 1 − y 2 − y 1 y 3 ) equations dt = 1 ǫ ( y 1 y 2 − 8 dy 3 3 y 3 )

  58. Example : For ε → 0 , the slow component x ( t ) fast term that 4 dx dt = x − x 3 + averages to zero converges ( in Law ) 90 √ ǫ y 2 to the solution X ( t ) dt = 10 dy 1 y ( t ) satisfying ǫ ( y 2 − y 1 ) the ( accelerated ) of the SDE: dt = 1 dy 2 chaotic Lorenz ǫ (28 y 1 − y 2 − y 1 y 3 ) dX dt = X − X 3 + σ dU equations dt = 1 ǫ ( y 1 y 2 − 8 dy 3 3 y 3 ) dt ( σ =0.126 ) class DS .

  59. Example : For ε → 0 , the slow component x ( t ) fast term that 4 dx dt = x − x 3 + averages to zero converges ( in Law ) 90 √ ǫ y 2 to the solution X ( t ) dt = 10 dy 1 y ( t ) satisfying ǫ ( y 2 − y 1 ) the ( accelerated ) of the SDE: dt = 1 dy 2 chaotic Lorenz ǫ (28 y 1 − y 2 − y 1 y 3 ) dX dt = X − X 3 + σ dU equations dt = 1 ǫ ( y 1 y 2 − 8 dy 3 3 y 3 ) dt ( σ =0.126 ) class DS . ε =0.001 Reduced equation describes ε 2 =0.001 1.4 noisy particle in quartic 1.2 potential. Equlibrium 1 Empirical Measure 0.8 distribution is bi - modal . 0.6 0.4 empirical distribution 0.2 0 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 x

  60. Large Systems

  61. Large Systems Another class of systems for which the reduced system can be derived rigorously as a limit of the full dynamics, is systems which many DOFs. The reduced system is obtained in the limit where the number of DOFs tends to infinity ( the “ thermodynamics limit ” ) . An instance of such systems are mechanical systems of heat baths . ( Will be addressed in detail in tomorrow’s lecture ) . Also systems of class DS .

  62. Birth - Death Systems Chemical reactions are commonly modeled by stochastic birth - death systems. The model : There are m species with populations x= ( x 1 ,x 2 ,...,x m ) . There are n reactions with rates h i ( x ) and stoichiometry numbers ν ij . Can easily be simulated by the Gillespie algorithm ( generative simulation of cont. - time Markov chains )

  63. The Gillespie algorithm :

  64. The Gillespie algorithm : • Initialize x i ( 0 ) for i=1,..., m .

  65. The Gillespie algorithm : • Initialize x i ( 0 ) for i=1,..., m . • Compute the reaction rates r j =h j ( x ( 0 )) for j=1,..., n .

  66. The Gillespie algorithm : • Initialize x i ( 0 ) for i=1,..., m . • Compute the reaction rates r j =h j ( x ( 0 )) for j=1,..., n . • Set the total rate r =r 1 +...+r n .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend