development of mini focusing small angle neutron
play

Development of mini-focusing small-angle neutron instruments - PowerPoint PPT Presentation

Development of mini-focusing small-angle neutron instruments (mfSANS) 1 Michihiro Furusaka Graduate School of Engineering, Hokkaido University Hokkaido University - Electron linac based neutron source Tokai - J-PARC spallation neutron


  1. Development of mini-focusing small-angle neutron instruments (mfSANS) 1 Michihiro Furusaka Graduate School of Engineering, Hokkaido University

  2. Hokkaido University - Electron linac based neutron source Tokai - J-PARC spallation neutron source - JRR-3 Reactor Tsukuba - KEK, - accelerator complex - KENS has been shutdown My locations 2

  3. Collaborators 3 • M. Furusaka, F. Fumiyuki, A. Homma, T. Satoh , Y. Sasaki, Y. Okusawa, N. s t s Ishikawa i t n • Y. Kiyanagi, T. Kamiyama, K. Kamada e i c • s Grad. Sch. Eng., Hokkaido Univ. t n • M. Sugiyama, T. Satoh, M. Hino e m • u g KUR, Kyoto Univ. r t • P. Mikula n s i n r e I t • t a NPI, Czech c • H. Yoshizawa, M. Shibayama, H. Endoh, Y. Kawamura, T. Asami s n • o t r n ISSP Univ. Tokyo t • H. Takahashi, K. Fujita e u e m N p • o Grad. Sch. Eng., Univ. Tokyo l • K. Hirota, K. Ikeda, Y. Otake e v e d • RIKEN e • S. Ikeda, S. Naito, H. Shimizu, T. Otomo, T. Torikai, T. Ino, S. Satoh, J. Suzuki c i v e s • D r KENS, KEK o • K. Wada, S. Aoki t c o d • l National Center of Neuro Psychiatric a • H. Mochiduki, T. Yasuda c i d e • M Jyuntendo Univ. • S. Fujiwara • JAEA

  4. Most of us know that neutron is a very powerful probe! 4

  5. Large neutron facilities 5 • Big facilities like • ILL, Oak Ridge, Munich, NIST, JRR-3, KAERI, ANSTO, ... • ISIS, Luhan center, PSI, SNS, J-PARC • Bright future?

  6. 7 reasons not to use neutron 01

  7. 7 reasons not to use neutron 7 • I have to submit a proposal to get beamtime... • well, I don't know how to do it... • Where can I find information... • I heard it is difficult to obtain beamtime... • I have to wait for almost 1 year... • I don't know what kind of information we can get with neutron... • I don't know how to analyze data... • I looked for a book, but they are too difficult to understand... • I know how to use laboratory X-ray instrument, but...

  8. Current situation 8 This is what we have now...

  9. Large neutron facilities 9 • Machine time already oversubscribed • Not very suitable to train scientists/students • Difficult to install your own instrument • limited beamlines • everyday instruments are out of scope • Instruments for developing countries (cost, traveling) • Difficult to test new ideas.

  10. NIST 30m SANS Huge and expensive SANS instruments 10 - Need a cold neutron source. - Only 1 instrument 32m at a guide-end. SANS-U@JRR-3

  11. We have difficulties: 11 • Neutron facilities are expensive and not always available in developing countries • Neutron instruments are also expensive • Maintaining the instruments requires manpower and budget • Training young scientists/students are difficult • We desperately need next generation scientist!

  12. In case of X-ray 12

  13. X-ray 13 • Laboratory sources are available anywhere • Proper training methods established • Variety of books available • You can ask experienced people around. • If laboratory source is not appropriate, you can always use synchrotron radiation

  14. Solution? 14

  15. Solution: Many compact SANS instruments 15 Compact SANS units But How? incident beam

  16. By the way, how about accelerator-driven laboratory-size neutron-source 16 s u o • RFQ accelerator + DTL ≈ 3-11MeV t u i q i b U n t e m u r t s n • Li or Be target i • Combined with: • many mfSANS modules, • mini-reflectometers, • mini-powder machines??

  17. How to make compact instruments: Focusing is the key. 17 Focusing makes instrument compact! compact ≈ low cost Cf. Focusing gives us no-gain in intensity!

  18. Ellipsoidal mirror focusing SANS Kamada et al. (Hokkaido Univ.) 18 • Ellipsoidal mirror Ellipsoidal Mirror • 1~10 mmø aperture Slit Mirror Sample Detector F1 F2 Shielding plate 1mm 10mm

  19. Detector Lens/mirror Detector Sample Sample Focusing SANS instrument is Compact! 19 ■ Focusing ■ Same resolution/intensity t c a p m o c ≈ - Angular resolution Virtual ≈ D/L ≈ d/ ℓ Source - Intensity: I ∝ φ ⋅ d Ω i ⋅ d Σ d Ω ⋅ V sample ⋅ η ⋅ d Ω f d ℓ ■ Conventional point collimation D L

  20. Focusing vs. Pinhole 20 q x q x q max Δ q x x -q max Small pinhole Focusing in real space q x q x q max Δ q x x x -q max

  21. Reciprocal space k i Real space k f k i q' k f Focusing in k space 21 α Focusing beam 2 θ Detector "plane" α '= α 2 θ '=2 θ Sample 2 θ '

  22. Mini-Focusing Small-Angle Neutron Scattering Instrument (mfSANS) @Hokkaido University 22 Time-of-flight focusing SANS

  23. 45MeV Electron Linac @Hokkaido University 23 Electron Linac Pulsed cold neutron source: • Best for developing Solid methane moderator neutron sources & devices • Flux ≈ 1/10,000 JRR-3@JAEA

  24. Time Averaged Intensity compared 24 Factor 2-3 uncertainties 1.E+16 ILL 1.E+15 Port03 coupled JSNS intensity (n/cm2/s/str/eV) JSNS Coupled (cylindrical), simple Time Averaged neutron 1.E+14 model JSNS Decoupled H2 (Ed=1eV) JRR-3 1.E+13 JSNS Decoupled H2 (Gd Poison) SNS (2MW) 1.E+12 ISIS CH4 (160kW) KENS-CH4 1.E+11 KENS CH 4 KENS H 2 O KENS-CH4 1.E+10 KENS-H2O KENS-H2O 1.E+09 HU CH 4 HU H 2 O ILL-Cold 1.E+08 ILL-thermal 1.E+07 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 E (eV)

  25. Ellipsoidal Mirror 25 • Mirror length : 900 mm • Major axis : 2 m • Minor axis : 20 mm • Borated glass • Ni coating Made by JNOP

  26. Detector Ellipsoidal mirror Beam port Data acquisition system Sample mfSANS at Hokkaido Univ. 26

  27. 1.5~2mm in other FWHM~1mm direction Fe 20nm Powder; Preliminary data 27 • 1mmφ aperture • cross sectional plot 1 0.1 0.01 0.001 10 � 4 � 10 � 5 0 5

  28. Bovine thighbone, cross section SANS preliminary analysis 28 ./0&/12*3$4/5$) ()* ()* - ! !"#$%#!' I(q) ∝ q -3 mfSANS@H.U. !"#$%#+' 5mm φ I(q) ∝ q -2 !"#$"%&#' ! !"#$%#*' mfSANS@JRR-3 I(q) ∝ q -1 2mm φ 、 10mm φ !"#$%#)' !"#$%#(' !"#$%#&' Q min =0.002 ()* +, - ! !"#$%#& ! !"#$%#' ! !"#$%#! ! ~ 0.003 A -1 Okusawa et al

  29. mfSANS@JRR-3/JAEA 29 Monochromatic neutron focusing SANS

  30. Sample Detector Focusing Mirror Prototype focusing SANS@JRR-3 30 Ellipsoidal mirror 2.5 Q c supermirror ~ 2 . 5 m L : 900mm W : ≈ 20mm

  31. Aperture mfSANS@JRR-3 31

  32. Ellipsoidal mirror 32 • Mirror Parameters • 2.5 m between focal points • short radius 20 mm • ≈ 1/6 of an arc (66 deg) • 2.5 Qc supermirror coating

  33. Direct beam profile 33 • 2 mm φ aperture • FWHM ≈ 2.5 mm

  34. a t a d y r a n i m Ni powder 20nm i e l r P 34 • Q min = 5 × 10 -3 A -1 using 2mmø aperture. 100 I(q)~q -4 10 I(q) Direct 1 beam High-angle 0.1 detector bank 0.01 q/A -1 0.001 0.002 0.005 0.010 0.020 0.050 0.100

  35. wider-angle scattering detectors at higher angle a t a d y r a n i m i e l r P 35 • 48 Linear position sensitive • 1/2 inch dia, 600 mm in length • GE made I(q) Water � 10 Water 散乱関数 I � Q � 0.01 0.001 10 � 4 10 � 5 10 � 6 Q � � � 1 � 0.02 0.05 0.10 0.20 0.50 1.00 0.05 q/A -1 0.6

  36. Micro-phase separated block copolymer 36 mfSANS 0.100 2mm φ 、 2hrs 0.050 0.010 0.005 0.001 5 � 10 � 4 1 � 10 � 4 0.00 0.02 0.04 0.06 0.08 SANS-U 4m

  37. Prism λ=λ 0 λ<λ 0 λ>λ 0 Strongly bent perfect crystals 37 • Bent perfect Si crystal Crystal Bender in fully asymmetric geometry CLBU5- 8-3.0 CLBP 695 5-8-20.0 CP LSC SARPO4-25 • Si (111) 16 -5- BN 6 RS6 25 BU ~39 U6- .4 25 #6 26 M8 P= 1 • Extremely small bent radius R ≈ 2m D2F-01L PS 2 SSCS SFGB8-120- J8- 6 F3-P 6-M3-T15- S5-Q5-SC56 • usually R ≈ 10~20m • 0.5 t × 120 × 20 mm slabs × 30, • long wavelength 5.8A • usually λ≈ 1~2A m 7 . s i 0 y i t v t i c ≈ e fl e r R , 5.8A y l t n e r r u C . w o l y r e v f o g n i k c a t s e h t e b y a M . m S e b l o r p i e h t c s i s a l r t s y r y c s t a l

  38. Currently, poor monochromator performance 38 • Improved monochromator being tested Large Δλ / λ Pin hole Beam divergence ±10mrad → +80mrad neutrons deflector 1Qc~4Qc neutron mirrors Bent Perfect Si monochromator

  39. High Resolution Detectors 39

  40. Resistive wire type PMT +ZnS scintillator 40 • Li (n, α ); ZnS(Ag) scintillation Hirota, Satoh et al. • 3inch, 5inch PMT (RIKEN, KEK, NOP) • R2486-04 • Good resolution • <1mm • convenient system for optical device test. [ m [ mm [ m [ mm

  41. Micro-strip Gas counters under development 41 • He(n, p) reaction • High reliability • "Grid lines" between anode and cathode • High resolution • 0.6mm FWHM • High counting rate: • 0.2-1MHz in future. • 10x - 100x 0.6mm FWHM K. Fujita,Takahashi et al. (Tokyo Univ.)

  42. Ultra-long Micro-Strip Gas Counter 42 • MSTube : 640 mm effective length • 1.6 ~ 3.2 mm position resolution • 0.2MHz; high count rate 640mm Local signal Global signal K. Fujita, H. Takahashi et al., Univ. Tokyo

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend