detailed r matrix analysis of 7 li p at 441kev
play

Detailed R-matrix analysis of 7 Li ( p , ) at 441keV Michael Munch, - PowerPoint PPT Presentation

Detailed R-matrix analysis of 7 Li ( p , ) at 441keV Michael Munch, Oliver Slund Kirsebom, Jacobus Andreas Swartz, Karsten Riisager and Hans Otto Uldall Fynbo Department for Physics and Astronomy, Aarhus University May 24 th 2018, NMNP 8 Be


  1. Detailed R-matrix analysis of 7 Li ( p , γ ) at 441keV Michael Munch, Oliver Sølund Kirsebom, Jacobus Andreas Swartz, Karsten Riisager and Hans Otto Uldall Fynbo Department for Physics and Astronomy, Aarhus University May 24 th 2018, NMNP

  2. 8 Be 1 + 18.2 1 + 17.6 2 + 16.9 2 + T = 0 + 1 16.6 4 + 11.35 2 + αα cluster 3.03 g.s. 0 + -0.09 8 Be α + α 1

  3. 8 Be intruders? 1 + 18.2 1 + 17.6 2 + 16.9 2 + T = 0 + 1 16.6 2 + ∼ 15 Hyldegaard et al. 2010 0 + ∼ 12 4 + 11.35 Caurier et al. 2001 0 + ∼ 6 Barker 1969 2 + αα cluster 3.03 g.s. 0 + -0.09 8 Be α + α S. Hyldegaard. “Beta-decay studies of 8Be and 12C”. PhD thesis. Aarhus University, 2010 E. Caurier et al. Physical Review C 64 (2001), p. 051301 F. C. Barker et al. Australian Journal of Physics 21 (1968), p. 239 2

  4. ab initio -28 + ;2 1 S[422] 0 -32 8 Be Quantum Monte Carlo -36 3 D[431] + ;0+1 3 + ;0+1 calculations by Pastore et al. 1 3 P[431] -40 + ;0+1 2 Energy (MeV) 7 Li+p -44 Includes most transistions. + ;0 1 G[44] 4 -48 Isospin mixing “by hand” -52 + ;0 1 D[44] 2 + ;0 -56 1 S[44] 0 α+α -60 S. Pastore et al. Physical Review C 90 (2014), p. 024321 3

  5. 7 Li ( p , γ ) 1 + 17.6 Resonant 17.25 2 + 7 Li + p 16.9 Direct αα 2 + 16.6 γ 2 + 3.03 αα g.s. 0 + -0.092 8 Be α + α 4

  6. Previous measurement of 7 Li ( p , γ ) 8 Be NaI Ge Magnetic spectronometer D. Zahnow et al. Zeitschrift f¨ ur Physik A 351 (1995), pp. 229–236 W. E. Sweeney et al. Physical Review 182 (1969), pp. 1007–1021 5

  7. Problems: ◮ Non-trivial response function ◮ Poor resolution ◮ Limited range ◮ Background ◮ No interference Solution: ◮ Indirect γ -ray spectoscopy 6

  8. Experiment 3 H + beam by 5MV Van de Graaff accelerator ∼ 1nA Two 5x5cm 16x16 Double Sided Silicon Strip Detectors Detection: position, energy and time Coincidences 7

  9. Coincidences 8 1 6 CM Energy difference [MeV] 19 F ( p , α ) 16 O 0 4 Protons − 1 2 16 17 18 6 Li ( p , 3 He ) α 0 7 Li ( p , α ) α 7 Li ( p , γ ) αα − 2 − 4 19 F ( p , α ) 16 O − 6 − 8 0 2 4 6 8 10 12 14 16 18 20 8 Be Excitation energy [MeV] 8

  10. Spectrum Determine widths by integration. 10 3 10 1 10 2 Counts per 100keV 10 0 0 15.9 16.2 16.5 16.8 17.1 10 1 10 0 0 0 2 4 6 8 10 12 14 16 18 Excitation energy [MeV] 9

  11. R-matrix β -decay studies: “interfernce is important for 8 Be”. Sequential decay R-matrix expression. (Expression in appendix) λ α λ ′ 1 λ ′ 2 Initial α ′ λ ′ 3 r ′ λ ′ 4 Compound r ′ Threshold 10

  12. Model 3 Model 1 + 2 + background pole + 0 + intruder 10 3 Model 3 10 2 Counts per 100keV 10 1 10 0 10 − 1 10 − 2 10 − 3 0 3 6 9 12 15 18 Excitation energy [MeV] 0 + 2 + 2 + Total 1 1 3 0 + 2 + 2 + 2 2 4 11

  13. Conclusions Parameter Present Lit. GFMC R-Mat. Γ 0 1 (eV) - 15.0(18) 12.0(3) 13.8(4) Γ 2 1 (eV) 6.0(3) 6.7(13) 3.8(2) 5.01(11) Γ 2 2 (meV) 35(3) 32(3) 29.7(3) 38(2) Γ 2 3 (meV) 2.1(6) 1.3(3) 2.20(5) 1.6(5) Evidence for 0 + at 12 . 0(3) MeV with Γ α = 2 . 4(5) MeV and Γ M 1 = 12(3) eV. Insufficient comparison for “intermediary” region. Needs theoretical spectrum. GFMC discrepancy depends on 1 + isospin mixing. arXiv: 1802.10404 12

  14. Shadowed readout I no no Readout Empty Idle requested? modules Multi event Shadow yes Check event count Empty modules Parse data Release DT Copy data Every n bytes Shadow 13

  15. Shadowed readout II Collaboration with Haakan Johanson (Chalmers) 100 RIO 4 80 Livetime [%] 60 40 20 Shadow (8k) SiCy (170) BLT ( ∞ ) Shadow (8k) SiCy ( ∞ ) MBLT ( ∞ ) Shadow MBLT (8k) 0 0 50 100 150 200 250 300 Trigger request frequency [kHz] 14

  16. Appendix 0: 8 B ( βα ) Counts / 10 keV 4 10 3 10 2 10 10 data Entries 300 1 Mean 1.476e+04 Std Dev 642 − 1 10 14000 14500 15000 15500 16000 16500 17000 E [keV] x 3 2 1 0 − 1 − 2 − 3 14000 14500 15000 15500 16000 16500 17000 Courtesy of Andreas Gad 15

  17. Appendix I: R-matrix expression Proceeding via narrow resonance Γ 0 λ c δ Γ 0 λ ′ c ′ ( E ′ 2 r ′ ) d σ αα ′ ( E ′ 2 r ′ ) = π � c p / 2) 2 , g J λ − E ) 2 + ( � ( E 0 k 2 c p Γ 0 dE ′ 2 a s ℓ s ′ ℓ ′ Density of states: 2 r ′ ) = 2 P c ′ 2 P r ′ 2 � � δ Γ 0 � γ µ r ′ ˜ γ λ c ′ ( ν ) ˜ ˜ A νµ � � λ c ′ ( E ′ 2 π � � νµ γ -ray “penetrability”: P c ′ = E 2 L +1 Observed widths: γ 2 2 P c ′ ˜ � λ c ′ ( λ ′ ) Γ 0 λ ′ δ Γ 0 2 r ′ ) dE ′ λ c ′ ( λ ′ ) = . 2 ≈ λ c ′ ( E ′ dS c γ 2 � 1 + Σ c ˜ � ˜ λ ′ c dE E λ ′ 16

  18. Appendix II: Models 10 3 Model 1 10 2 Counts per 100keV 10 1 10 0 10 3 Model 3 10 − 1 10 2 Counts per 100keV 10 − 2 10 1 10 − 3 10 0 0 3 6 9 12 15 18 Excitation energy [MeV] 10 − 1 10 3 Model 2 10 − 2 10 2 10 − 3 Counts per 100keV 0 3 6 9 12 15 18 10 1 Excitation energy [MeV] 10 0 0 + 2 + 2 + Total 1 1 3 0 + 2 + 2 + 2 2 4 10 − 1 10 − 2 10 − 3 0 3 6 9 12 15 18 Excitation energy [MeV] 17

  19. Appendix III: Numbers Parameter Model 1 Model 2 Model 3 3008 +55 E 2 1 , (keV) 2960(22) 2969(11) − 9 γ 2 1 , M 1 (10 − 11 × eV − 1 ) 3 . 31(3) 3 . 22(6) 3 . 13(3) Γ 0 2 1 , M 1 (eV) 5 . 57(11) 5 . 3(2) 5 . 01(11) γ 2 1 , E 2 (10 − 22 × eV − 3 ) − 4 . 2(12) − 4(500) 0 . 9(592) Γ 0 2 1 , E 2 (meV) 1 . 9(12) < 10 meV < 1 meV √ − 29 . 9 +0 . 3 γ 2 1 ,α 2 ( keV) − 29 . 3(5) 28 . 6(3) − 1 . 5 Γ 0 2 1 ,α 2 (MeV) 1701(27) 1601(45) 1546(25) Parameter Model 1 Model 2 Model 3 E 2 2 (keV) 16 629(11) 16 588(5) 16 590(5) E 0 1 (keV) [0] [0] [0] γ 2 2 , M 1 (10 − 11 × eV − 1 ) 11 . 6(7) 12 . 7(4) 12 . 9(4) γ 0 1 M 1 (10 − 11 × eV − 1 ) 4 . 35(5) 4 . 36(6) [4 . 36] Γ 0 2 2 , M 1 (meV) 27 . 9(17) 38(2) 38(2) Γ 0 0 1 M 1 (eV) 13 . 7(3) 13 . 8(4) [13.8] √ √ γ 2 2 ,α 2 ( keV) [3.1] [3.1] [3.1] γ 0 1 α 0 ( keV) [22.1] [22.1] [22.1] Γ 0 2 2 ,α 2 (keV) [108] [108] [108] Γ 0 0 1 α 0 (eV) [5.57] [5.57] [5.57] E 2 3 (keV) [16922] 16 912(25) 16 910(23) E 0 2 (MeV) - - 12 . 0(3) γ 2 3 , M 1 (10 − 11 × eV − 1 ) 3 . 2 +1 . 7 4 . 3(8) 4 . 5(7) γ 0 2 M 1 (10 − 11 × eV − 1 ) - - 0 . 58(8) − 0 . 9 Γ 0 Γ 0 2 3 , M 1 (meV) 0 . 8(8) 1 . 4(5) 1 . 6(5) 0 2 M 1 (eV) - - 12(3) √ √ γ 2 3 ,α 2 ( keV) [2.2] [2.2] [2.2] γ 0 2 α 0 ( keV) - - − 15 . 2(15) Γ 0 2 3 ,α 2 (keV) [74] [74] [74] Γ 0 0 2 α 0 (MeV) - - 2 . 4(5) E 2 4 (MeV) - 24(3) [24] γ 2 4 , M 1 (10 − 11 × eV − 1 ) - − 1 . 1(2) − 1 . 8(2) Γ 0 2 4 , M 1 (meV) - 57(20) 160(40) √ γ 2 4 ,α 2 ( keV) - 38(7) 35 . 9(18) Γ 0 2 4 ,α 2 (MeV) - 20(8) 18 . 0(18) χ 2 / ndf 878 / 735 838 / 731 808 / 730 P (%) 0.02 0.36 2.3 18

  20. Appendix IV: Resonance scan Yield of 2 α between 2 and 3MeV. 400 300 Yield [1/uC] 200 100 0 430 440 450 460 470 480 Proton energy [keV] 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend