det i zk i j 1 k t i t j dt det m d n c a b n n 0 2000
play

det ( I + zK ) = i , j = 1 K ( t i , t j ) dt det ( m) (d) n ! - PowerPoint PPT Presentation

Z ENTRUM M ATHEMATIK T ECHNISCHE U NIVERSITT M NCHEN Very Special Functions unbeknownst to Mathematica and kinship numerical explorations of random matrix distributions operator determinants (b) (a) 1000 b 500 Ku ( x ) = a K ( x ,


  1. Z ENTRUM M ATHEMATIK T ECHNISCHE U NIVERSITÄT M ÜNCHEN Very Special Functions — unbeknownst to Mathematica and kinship numerical explorations of random matrix distributions operator determinants (b) (a) 1000 � b 500 Ku ( x ) = a K ( x , y ) u ( y ) dy 0 -500 ∞ z n � -1000 n -1000 -500 0 500 1000 ∑ det ( I + zK ) = i , j = 1 K ( t i , t j ) dt det ( µ m) (d) n ! (c) [ a , b ] n n = 0 2000 1500 1000 500 [w,x] = QuadratureRule(a,b,m); 0 0 1000 2000 3000 ( µ m) w = sqrt(w); [xi,xj] = ndgrid(x,x); d = det(eye(m)+z*(w’*w).*K(xi,xj)); fluctuations of turbulent liquid crystals Folkmar Bornemann C HALLENGES IN 21 ST C ENTURY E XP . M ATH . C OMP ., ICERM J ULY 2014 F OLKMAR B ORNEMANN 1

  2. S CALING L IMITS OF R ANDOM M ATRICES Wigner semicircle law (1955) example: GUE 0.5 Gaussian unitary ensemble 0.4 probability density A = randn(n) + i*randn(n); 0.3 A = (A+A’)/2; 0.2 spectrum as n → ∞ ? fluctuations? 0.1 0 − 2 − 1 0 1 2 eigenvalues/ √ n edge: Tracy–Widom distribution F 2 bulk: Gaudin–Mehta distribution E 2 1 0.5 0.8 0.4 probability density probability density 0.6 0.3 0.4 0.2 0.2 0.1 0 0 0 0.5 1 1.5 2 2.5 3 − 5 − 4 − 3 − 2 − 1 0 1 2 normalized eigenvalue spacing normalized maximum eigenvalue universality: fluctuation statistics does only depend on symmetry class (Soshnikov; Tao; L. Erd˝ os, . . . ) C HALLENGES IN 21 ST C ENTURY E XP . M ATH . C OMP ., ICERM J ULY 2014 F OLKMAR B ORNEMANN 2

  3. U NIVERSALITY WITHIN M ATHEMATICS Montgomery–Odlzyko “law” (’73/’87) Montgomery−Odlyzko law 1 0.9 nontrivial zeros 1 2 + i γ n of Riemann ζ -function 0.8 0.7 Probability density large n statistics of the spacings of 0.6 0.5 2 π log γ n γ n 0.4 2 π 0.3 0.2 0.1 → Gaudin–Mehta distribution E 2 0 0 0.5 1 1.5 2 2.5 3 Normalized consecutive spacings fluctuations in Ulam’s problem (Baik/Deift/Johansson ’99) l n = length of longest increasing subsequence of a random permutation of order n l n − 2 √ n → Tracy–Widom distribution F 2 n 1/6 C HALLENGES IN 21 ST C ENTURY E XP . M ATH . C OMP ., ICERM J ULY 2014 F OLKMAR B ORNEMANN 3

  4. U NIVERSALITY : A V ERY S HORT I NTRODUCTION B./Ferrari/Prähofer '08 H. Spohn: Random Matrices and the KPZ Equation (June 1, ’12, HCM, Bonn) Universality: The macroscopic statistics depend on the models, but the microscopic statistics are independent of the details of the systems except the symmetries. — L. Erd˝ os ’10 C HALLENGES IN 21 ST C ENTURY E XP . M ATH . C OMP ., ICERM J ULY 2014 F OLKMAR B ORNEMANN 4

  5. V ERY S PECIAL F UNCTIONS , I NDEED spacing distributions of GUE @ bulk � P ( exactly n eigenvalues in ( 0, s )) = ( − 1 ) n ∂ n � ∂ z n E 2 ( s ; z ) � n ! � z = 1 Jimbo/Miwa/Môri/Sato ’80 Gaudin ’61 � π s � � � � σ ( x ; z ) E 2 ( s ; z ) = det I − zK | L 2 ( 0, s ) E 2 ( s ; z ) = exp − dx x 0 w/ σ -form of Painlevé V w/ kernel ( x σ ′′ ) 2 = 4 ( σ − x σ ′ )( x σ ′ − σ − σ ′ 2 ) K ( x , y ) = sinc ( π ( x − y )) π x + z 2 σ ( x ; z ) ≃ z π 2 x 2 can be expressed in terms of ( x → 0 ) radial prolate spheroidal wave functions C HALLENGES IN 21 ST C ENTURY E XP . M ATH . C OMP ., ICERM J ULY 2014 F OLKMAR B ORNEMANN 5

  6. V ERY S PECIAL F UNCTIONS , V ERY M UCH S O I NDEED spacing distributions of GUE @ soft edge � P ( exactly n eigenvalues in ( s , ∞ )) = ( − 1 ) n ∂ n � ∂ z n F 2 ( s ; z ) � n ! � z = 1 Forrester ’93 Tracy/Widom ’93 � � � ∞ � � F 2 ( s ; z ) = det I − z K | L 2 ( s , ∞ ) s ( x − s ) u ( x ; z ) 2 dx F 2 ( s ; z ) = exp − w/ kernel w/ Painlevé II K ( x , y ) = Ai ( x ) Ai ′ ( y ) − Ai ′ ( x ) Ai ( y ) u ′′ = 2 u 3 + xu x − y u ( x ; z ) ≃ √ z Ai ( x ) ( x → ∞ ) Without the Painlevé representations, the numerical evaluation of the Fredholm determinants is quite involved. — Tracy/Widom ’00 Recently a numerical analyst has shown that the most efficient way to compute spacing distributions in classical RMT is to use Fredholm determinant formulas. — Forrester ’10 C HALLENGES IN 21 ST C ENTURY E XP . M ATH . C OMP ., ICERM J ULY 2014 F OLKMAR B ORNEMANN 6

  7. F REDHOLM D ETERMINANTS VS . P AINLEVÉ T RANSCENDENTS very special functions: nonlinear ode, but integrable Ivar Fredholm (1866–1927) Paul Painlevé (1863–1933) six families of irreducible transcendental functions (1895) determinant of integral operator (1899) � b u ′′ = 6 u 2 + x Ku ( x ) = a K ( x , y ) u ( y ) dy u ′′ = 2 u 3 + xu − α u ′′ = u − 1 u ′ 2 − x − 1 u ′ + x − 1 ( α u 2 + β ) + γ u 3 + δ u − 1 � . ∞ z n � n . ∑ . det ( I + zK ) = i , j = 1 K ( t i , t j ) dt det n ! [ a , b ] n n = 0 C HALLENGES IN 21 ST C ENTURY E XP . M ATH . C OMP ., ICERM J ULY 2014 F OLKMAR B ORNEMANN 7

  8. C OMPARING D IFFERENT N UMERICAL A PPROACHES numerical evaluation of the Tracy–Widom distribution F 2 • via Painlevé II as IVP (backwards) Painlevé II by IVP 0 10 F 2 (x) by IVP Prähofer (’04): 16 digits (1500 internally!) Painlevé II by BVP F 2 (x) by BVP Bejan (’05): 3 digits F 2 (x) by Fredholm −5 10 machine precision Edelman/Persson (’05): 8 digits @ 8.9 sec absolute error • via Painlevé II as BVP −10 10 Tracy/Widom (’94): 10 digits (75 internally!) Dieng (’05): 9 digits @ 3.7 sec −15 10 Driscoll/B./Trefethen (’08): 13 digits @ 1.3 sec • via Fredholm determinant −20 10 −8 −6 −4 −2 0 2 4 6 8 x B. (’10): 15 digits @ 0.69 sec absolute error using IEEE double precision C HALLENGES IN 21 ST C ENTURY E XP . M ATH . C OMP ., ICERM J ULY 2014 F OLKMAR B ORNEMANN 8

  9. T HE N EED FOR C ONNECTION F ORMULAE instability solution of Painlevé II, u ( x ) ≃ √ u xx = 2 u 3 + xu , z Ai ( x ) ( x → ∞ ) , separatrix for z = 1 � IVP highly unstable u � x � u � x � 4 4 2 2 x x � 14 � 12 � 10 � 8 � 6 � 4 � 2 2 4 � 14 � 12 � 10 � 8 � 6 � 4 � 2 2 4 � 2 � 2 u ( x ) with √ z = 1 − 10 − 8 , 1, 1 + 10 − 8 u ( x ) with √ z = 1 − 10 − 16 , 1, 1 + 10 − 16 consequence • calculate F 2 via a BVP solution � connection formula needed: u ( x ) ≃ √ z Ai ( x ) ( x → ∞ ) ⇒ u ( x ) ≃ ? ( x → − ∞ ) C HALLENGES IN 21 ST C ENTURY E XP . M ATH . C OMP ., ICERM J ULY 2014 F OLKMAR B ORNEMANN 9

  10. T HE N EED FOR C ONNECTION F ORMULAE instability solution of Painlevé II, u ( x ) ≃ √ u xx = 2 u 3 + xu , z Ai ( x ) ( x → ∞ ) , separatrix for z = 1 � IVP highly unstable u � x � u � x � 4 4 2 2 x x � 14 � 12 � 10 � 8 � 6 � 4 � 2 2 4 � 14 � 12 � 10 � 8 � 6 � 4 � 2 2 4 � 2 � 2 u ( x ) with √ z = 1 − 10 − 8 , 1, 1 + 10 − 8 u ( x ) with √ z = 1 − 10 − 16 , 1, 1 + 10 − 16 consequence • calculate F 2 via a BVP solution � connection formula needed: √ u ( x ) ≃ Ai ( x ) ( x → ∞ ) ⇒ u ( x ) ≃ − x /2 ( x → − ∞ ) C HALLENGES IN 21 ST C ENTURY E XP . M ATH . C OMP ., ICERM J ULY 2014 F OLKMAR B ORNEMANN 9

  11. Q UADRATURE M ETHOD Nyström (1930) solved a Fredholm equation ( I + zK ) u = f of the 2 nd kind, � b u ( x ) + z a K ( x , y ) u ( y ) dy = f ( x ) ( x ∈ ( a , b )) , using an m -point quadrature formula w/ weights w j & nodes x j Evert Nyström (1895–1960) m ∑ u ( x i ) ≈ u i : u i + z w j K ( x i , x j ) u j = f ( x i ) ( i = 1, . . . , m ) j = 1 straightforward idea (B. ’08) approximate det ( I + zK ) simply by the corresponding n × n determinant � � I + z ( w j K ( x i , x j )) m det i , j = 1 C HALLENGES IN 21 ST C ENTURY E XP . M ATH . C OMP ., ICERM J ULY 2014 F OLKMAR B ORNEMANN 10

  12. C ONVERGENCE R ATE OF THE Q UADRATURE M ETHOD Matlab code [w,x] = QuadratureRule(a,b,m); w = sqrt(w); [xi,xj] = ndgrid(x,x); d = det(eye(m)+z*(w’*w).*K(xi,xj)); Theorem (B. ’10) for quadrature formula of order ν w/ positive weights: • if kernel is C k − 1,1 ([ a , b ] 2 ) , error = O ( ν − k ) ; • if kernel is bounded analytic, there is ρ > 1 w/ error = O ( ρ − ν ) . C HALLENGES IN 21 ST C ENTURY E XP . M ATH . C OMP ., ICERM J ULY 2014 F OLKMAR B ORNEMANN 11

  13. P ROOF idea of proof (Hilbert 1904, B. ’10) m -point quadrature formula � b m ∑ a f ( t ) dt ≈ w k f ( x k ) k = 1 yields � b � b ∞ z n n Fredholm ∑ det ( I + zK ) = dt 1 · · · i , j = 1 K ( t i , t j ) dt n det n ! 1903 a a n = 0 ∞ m m z n n Hadamard ∑ ∑ ∑ ≈ w k 1 · · · i , j = 1 K ( x k i , x k j ) w k n det n ! 1893 n = 0 k 1 = 1 k n = 1 v. Koch = det ( I + zK m ) 1892 w/ the m × m -matrix � � m w 1/2 K ( x i , x j ) w 1/2 K m = i j i , j = 1 C HALLENGES IN 21 ST C ENTURY E XP . M ATH . C OMP ., ICERM J ULY 2014 F OLKMAR B ORNEMANN 12

  14. E XAMPLE 1 Gaudin–Mehta distribution E 2 � � E 2 ( 0; s ) = det I − K | L 2 ( 0, s ) K ( x , y ) = sinc ( π ( x − y )) , 0 10 approximation error for E 2 (0;2) −5 10 −10 10 −15 10 −20 10 0 5 10 15 20 25 dimension stars: Gaudin’s method, dots: Gauss–Legendre, circles: Clenshaw–Curtis C HALLENGES IN 21 ST C ENTURY E XP . M ATH . C OMP ., ICERM J ULY 2014 F OLKMAR B ORNEMANN 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend