design and modeling of a 0 4mw ch multi channel
play

Design and Modeling of a 0.4mW/Ch Multi-Channel Integrated Circuit - PowerPoint PPT Presentation

DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 1/26 Design and Modeling of a 0.4mW/Ch Multi-Channel Integrated Circuit for Infrared Gas Recognition S. Sutula, C. Ferrer and F. Serra-Graells


  1. DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 1/26 Design and Modeling of a 0.4mW/Ch Multi-Channel Integrated Circuit for Infrared Gas Recognition S. Sutula, C. Ferrer and F. Serra-Graells stepan.sutula@imb-cnm.csic.es Integrated Circuits and Systems (ICAS) Instituto de Microelectrónica de Barcelona, IMB-CNM(CSIC) November 2010 S. Sutula et al. IMB-CNM(CSIC)

  2. DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 2/26 1 Introduction 2 ROIC Channel Architecture 3 Pre-Amplification and Filtering 4 Blind Cancellation and Lock-in Demodulation 5 Integrating A/D Conversion 6 Post Layout High Level Modeling 7 CMOS Integration and Experimental Results 8 Conclusions S. Sutula et al. IMB-CNM(CSIC)

  3. DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 3/26 1 Introduction 2 ROIC Channel Architecture 3 Pre-Amplification and Filtering 4 Blind Cancellation and Lock-in Demodulation 5 Integrating A/D Conversion 6 Post Layout High Level Modeling 7 CMOS Integration and Experimental Results 8 Conclusions S. Sutula et al. IMB-CNM(CSIC)

  4. ������� ����� ������� �� ������ ��������� ���� ��� ����� ���� ������� ������ ����� �� ������ �� ����� ������� ������ ������� ���� ���� ���� ��� ������� ����������� ���������� ���������� ��� ����������� ��� �� DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 4/26 Introduction ◮ Real-time gas recognition for environmental monitoring, toxic gas detection. . . ◮ IR spectroscopic absorption digital fingerprint ◮ Thermal µ bolometer LWIR sensing array ◮ Multi-channel ROIC for fast acquisition and low-noise ◮ Channel lock-in demodulation for high-accuracy ◮ Low-power operation to avoid thermal drifts of IR sensors ◮ Compact pitch for direct sensors-ROIC bonding S. Sutula et al. IMB-CNM(CSIC)

  5. DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 5/26 1 Introduction 2 ROIC Channel Architecture 3 Pre-Amplification and Filtering 4 Blind Cancellation and Lock-in Demodulation 5 Integrating A/D Conversion 6 Post Layout High Level Modeling 7 CMOS Integration and Experimental Results 8 Conclusions S. Sutula et al. IMB-CNM(CSIC)

  6. DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 6/26 ROIC Channel Architecture ◮ High programmability f c (2bit) progin I bias (2bit) Config. event Register ◮ No external progout + V th components G m (2bit) G (2bit) C int 1 (� bit) V amp up datain V int ◮ Built-in bias V sens 20bit event R sens Counter I eff dataout generators for low down Bias & ref. - V th generator crosstalk A/D Converter ◮ Digital only interface V com V blind V lockin ◮ External lock-in synchronization ∆ V sens = I bias ∆ R sens ◮ Dedicated blind channel for cancellation of common disturbing signals ◮ Individual configuration register per channel S. Sutula et al. IMB-CNM(CSIC)

  7. DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 7/26 1 Introduction 2 ROIC Channel Architecture 3 Pre-Amplification and Filtering 4 Blind Cancellation and Lock-in Demodulation 5 Integrating A/D Conversion 6 Post Layout High Level Modeling 7 CMOS Integration and Experimental Results 8 Conclusions S. Sutula et al. IMB-CNM(CSIC)

  8. DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 8/26 Pre-Amplification and Filtering ◭ Sub-Hz high-pass specs I tun V tun ◭ Independent gain and corner M2 P £ programmability required M1 ◮ Highly linear cap amplifier: C B G = ∆ V amp ∆ V sens = C A C B init ◮ Subthreshold MRC filtering: C A V sens V amp I tun ( PTAT ) f co = 1 − Vcorner f c = f co e Ut 2 π C B U t ◮ Fast initialization switch + V corner V ref S. Sutula et al. IMB-CNM(CSIC)

  9. DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 9/26 Pre-Amplification and Filtering ◮ Gain tuning by P scaling I tun V tun ◮ Multi-decade filter log tuning: M2 P £ V corner = M ∆ V corner = MU t ln ( NK ) M1 f co f c = ( NK ) M C B f c × 10 ± 3 ⇔ V corner ± 173mV at 25 o C init 1 : N 1 : N C A V sens V amp M £ M1 M2 1 V ref K 1 K + V corner V ref ¢ V corner V corner S. Sutula et al. IMB-CNM(CSIC)

  10. DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 10/26 1 Introduction 2 ROIC Channel Architecture 3 Pre-Amplification and Filtering 4 Blind Cancellation and Lock-in Demodulation 5 Integrating A/D Conversion 6 Post Layout High Level Modeling 7 CMOS Integration and Experimental Results 8 Conclusions S. Sutula et al. IMB-CNM(CSIC)

  11. DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 11/26 Blind Cancellation and Lock-in Demodulation ◮ Differential to single ended M7 M8 ◮ Voltage-to- current conversion I ota ◮ Lock-in demodulation I eff V amp V blind M1 M2 + V ref ◮ Low-power subthreshold OTA : PDM stage V lockin of the ADC ∆ V amp = I ota I eff G m = 2 nU t ∝ U t M4 M3 M5 M6 I ota ∝ I S = 2 n β U 2 t (cascode topology not shown) ◮ Current-domain lock-in demodulation by cross-coupling ◮ Voltage log compression allows fast switching at low-power S. Sutula et al. IMB-CNM(CSIC)

  12. DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 12/26 1 Introduction 2 ROIC Channel Architecture 3 Pre-Amplification and Filtering 4 Blind Cancellation and Lock-in Demodulation 5 Integrating A/D Conversion 6 Post Layout High Level Modeling 7 CMOS Integration and Experimental Results 8 Conclusions S. Sutula et al. IMB-CNM(CSIC)

  13. DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 13/26 Integrating A/D Conversion event ◮ PDM noise shaping + V th C int 1 (� bit) ◮ Digital counter as low-pass filter up datain V int 20bit event Counter ◮ Asynchronous operation for very I eff dataout down low-power and low-crosstalk - V th Pulse density modulation Digital filtering S. Sutula et al. IMB-CNM(CSIC)

  14. DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 14/26 Integrating A/D Conversion init ◮ PDM noise shaping C int V ref + V th ◮ Digital counter as low-pass filter I eff up V int ◮ Asynchronous operation for very event low-power and low-crosstalk event down ◮ Loss-less analog integrator with CDS C reset CDS / V - V ref th for high-linearity and noise reduction: V ref I eff f PDM = C int V th S. Sutula et al. IMB-CNM(CSIC)

  15. DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 15/26 Integrating A/D Conversion init ◮ PDM noise shaping C int V ref + V th ◮ Digital counter as low-pass filter I eff up V int ◮ Asynchronous operation for very event low-power and low-crosstalk event down ◮ Loss-less analog integrator with CDS C reset CDS / V - V ref th for high-linearity and noise reduction: V ref I eff f PDM = V ref C int V th M1 M3 ◮ Built-in threshold comparator: up down V th = nU t ln X M4 M5 1 X X 1 ◮ Thermal compensation of G m : V int n adc = T samp f PDM = C A G m T samp q adc = ⌊ n adc ⌋ C int ∆ R sens C B V th S. Sutula et al. IMB-CNM(CSIC)

  16. DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 16/26 1 Introduction 2 ROIC Channel Architecture 3 Pre-Amplification and Filtering 4 Blind Cancellation and Lock-in Demodulation 5 Integrating A/D Conversion 6 Post Layout High Level Modeling 7 CMOS Integration and Experimental Results 8 Conclusions S. Sutula et al. IMB-CNM(CSIC)

  17. DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 17/26 Post Layout High Level Modeling ◮ Simulation time reduction Up Up DataOut 1 1 Vsens Vamp Vamp Ieff DataOut Vsens ◮ Complete read-out Preamplifier Down Overflow Down 2 2 Vblind Ieff Ieff Overflow channel model Vint Vint Digital Vblind event event Filter 3 Vlockin ◮ Entire set of channel Integrator PDM Vlockin Lock-in Demodulator configurations S. Sutula et al. IMB-CNM(CSIC)

  18. DCIS 2010 Intro Channel Preamp Blind-Lock ADC Modeling Results Conclusions 18/26 Post Layout High Level Modeling ◮ Simulation time reduction Up Up DataOut 1 1 Vsens Vamp Vamp Ieff DataOut Vsens ◮ Complete read-out Preamplifier Down Overflow Down 2 2 Vblind Ieff Ieff Overflow channel model Vint Vint Digital Vblind event event Filter 3 Vlockin ◮ Entire set of channel Integrator PDM Vlockin Lock-in Demodulator configurations ◮ Wide range of nonidealities White Noise modeling H_n ◮ Technology process Noise Modeling 1/w_ns+1 and temperature s 1 ◮ Flicker and thermal 1 A 1 s+w_h 1/w_ls+1 Vsens Vamp Output noise options High -Pass Low-Pass Gain Range Vdc Limit ◮ External sensor DC Output Level modeling S. Sutula et al. IMB-CNM(CSIC)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend