derivative free robust optimization by outer
play

Derivative-Free Robust Optimization by Outer Approximations Stefan - PowerPoint PPT Presentation

Derivative-Free Robust Optimization by Outer Approximations Stefan Wild Mathematics and Computer Science Division Argonne National Laboratory Joint work with Goldfarb grandson Matt Menickelly (Argonne) + Sven Leyffer, Todd Munson, Charlie


  1. Derivative-Free Robust Optimization by Outer Approximations Stefan Wild Mathematics and Computer Science Division Argonne National Laboratory Joint work with Goldfarb grandson Matt Menickelly (Argonne) + Sven Leyffer, Todd Munson, Charlie Vanaret (Argonne) January 11, 2018

  2. Outline ⋄ Nonlinear robust optimization ⋄ E. Polak’s method of inexact outer x ∈ R n max min u ∈U f ( x , u ) approximation ⋄ ∇ f -free outer approximation ⋄ Early numerical experience Images: [DebRoy, Zhang, Turner, Babu; ScrMat, 2017] US-Mexico 2018 1

  3. Nonlinear Robust Optimization Guard against worst-case uncertainty in the problem data � � min f ( x ) : c ( x, u ) ≤ 0 ∀ u ∈ U x ∈ R n where f certain objective c : R n × R m → R p uncertain constraints u uncertain variables/data U ⊂ R m uncertainty set (compact, convex) Well studied for linear (convex/concave) f , c [Ben-Tal, El Ghaoui, Nemirovski; 2009] , [Bertsimas, Brown, Caramani; SIRev 2011] , . . . US-Mexico 2018 2

  4. Nonlinear Robust Optimization Guard against worst-case uncertainty in the problem data � � min f ( x ) : c ( x, u ) ≤ 0 ∀ u ∈ U x ∈ R n where f certain objective c : R n × R m → R p uncertain constraints u uncertain variables/data U ⊂ R m uncertainty set (compact, convex) Well studied for linear (convex/concave) f , c [Ben-Tal, El Ghaoui, Nemirovski; 2009] , [Bertsimas, Brown, Caramani; SIRev 2011] , . . . Special cases: Minimax Implementation errors x ∈ R n max min u ∈U f ( x, u ) x ∈ R n max min u ∈U f ( x + u ) US-Mexico 2018 2

  5. Another Case: Goldfarb Robust Optimization Robust convex quadratically constrained programs c ⊤ x : 1 � � 2 x ⊤ Qx + x ⊤ g + γ ≤ 0 min ∀ ( Q, g, γ ) ∈ U (RCQP) x ∈ R n US-Mexico 2018 3

  6. Another Case: Goldfarb Robust Optimization Robust convex quadratically constrained programs c ⊤ x : 1 � � 2 x ⊤ Qx + x ⊤ g + γ ≤ 0 min ∀ ( Q, g, γ ) ∈ U (RCQP) x ∈ R n ⋄ [Ben-Tal, Nemirovski; MathOR, 1997] : U i conditions to obtain SDP for (RCQP) ⋄ [Goldfarb, Iyengar; MathProg, 2003] : U i conditions to obtain SOCP for (RCQP) � Discrete/polytopic uncertainty sets p � � + , Q i � 0 ∀ i , λ ⊤ e = 1 � λ i ( Q i , g i , γ i ) , λ ∈ R p U = ( Q, g, γ ) : ( Q, g, γ ) = i =1 � Affine uncertainty sets U p Q = Q 0 + Q i � 0 ∀ i � λ i Q i , � λ � ≤ 1 , i =1 p ( g, γ ) = ( g 0 , γ 0 ) + � v i ( g i , γ i ) , � v � ≤ 1 i =1 � Factorized uncertainty sets U · · · . . . CRs around MLEs ⋄ See also Robust portfolio selection problems [Goldfarb, Iyengar; MOR, 2003] US-Mexico 2018 3

  7. Example of Robustness “Helping” � 2 ≤ 0 , ∀ u ∈ U = [ − 1 , 1] 2 � u 1 x 1 + u 2 x 2 − u 2 1 − u 2 min x 1 + x 2 : x ∈ R 2 2 2 x 2 x 2 √ 3 x 1 + x 2 = 2 1 1 x 1 + x 2 = k √ x 1 + x 2 = − 2 x 1 x 1 − 2 − 1 1 2 − 2 − 1 1 2 − 1 − 1 − 2 − 2 √ Robust problem, x ∗ = ( − 1 2 , 1 3 2 , − 1 Nominal problem, ˆ u = ( 2 ) 2 ) √ √ US-Mexico 2018 4

  8. Notation and Assumptions Implicitly robustified form: x ∈ R n max min u ∈U f ( x, u ) =: min x ∈ R n Ψ U ( x ) (MM) where, for any subset ˆ U ⊆ U use the relaxation: Ψ ˆ U ( x ) := max f ( x, u ) ≤ Ψ U ( x ) u ∈ ˆ U Sometimes forget and write Ψ := Ψ U US-Mexico 2018 5

  9. Notation and Assumptions Implicitly robustified form: x ∈ R n max min u ∈U f ( x, u ) =: min x ∈ R n Ψ U ( x ) (MM) where, for any subset ˆ U ⊆ U use the relaxation: Ψ ˆ U ( x ) := max f ( x, u ) ≤ Ψ U ( x ) u ∈ ˆ U Sometimes forget and write Ψ := Ψ U Assume the following about (MM): a. Local Lipschitz continuity of f and ∇ x f everywhere f ( · , · ) and, for any u ∈ U , partial gradient ∇ x f ( · , u ) Lipschitz continuous over any bounded subset of R n × R m and R n , resp. b. Compactness of U c. (MM) solution exists → no convexity of f or U assumed US-Mexico 2018 5

  10. An Optimality Measure Employ second-order convex approximation of f ( · , u ) at x : � � f ( x, u ) + �∇ x f ( x, u ) , h � + 1 2 � h � 2 Θ( x ) := min h ∈ R n max − Ψ( x ) u ∈U US-Mexico 2018 6

  11. An Optimality Measure Employ second-order convex approximation of f ( · , u ) at x : � � f ( x, u ) + �∇ x f ( x, u ) , h � + 1 2 � h � 2 Θ( x ) := min h ∈ R n max − Ψ( x ) u ∈U Properties of Θ For all x ∈ R n 1. Θ( x ) ≤ 0 2. Θ( x ) is continuous 3. 0 ∈ ∂ Ψ( x ) if and only if Θ( x ) = 0 4. Θ( x ) = � ξ 0 �� Ψ U ( x ) − f ( x, u ) � ξ 0 + 1 � � �� 2 � ξ � 2 : − min ∈ co : u ∈ U ξ ∇ x f ( x, u ) ξ 0 ,ξ US-Mexico 2018 6

  12. An Optimality Measure Employ second-order convex approximation of f ( · , u ) at x : � � f ( x, u ) + �∇ x f ( x, u ) , h � + 1 2 � h � 2 Θ( x ) := min h ∈ R n max − Ψ( x ) u ∈U Properties of Θ For all x ∈ R n 1. Θ( x ) ≤ 0 2. Θ( x ) is continuous 3. 0 ∈ ∂ Ψ( x ) if and only if Θ( x ) = 0 4. Θ( x ) = � ξ 0 �� Ψ U ( x ) − f ( x, u ) � ξ 0 + 1 � � �� 2 � ξ � 2 : − min ∈ co : u ∈ U ξ ∇ x f ( x, u ) ξ 0 ,ξ For any relaxation ˆ U ⊆ U , will use � ξ 0 �� Ψ ˆ � � � �� ξ 0 + 1 U ( x ) − f ( x, u ) 2 � ξ � 2 : : u ∈ ˆ Θ ˆ U ( x ) := − min ∈ co U ξ ∇ x f ( x, u ) ξ 0 ,ξ ≤ Θ( x ) = Θ U ( x ) US-Mexico 2018 6

  13. Inexact Method of Outer Approximation Cutting-plane method from [Polak Optimization; 1997] Uses approximate solutions of alternating block subproblems � � x ∈ R n Ψ ˆ min U ( x ) , max u ∈U f (ˆ x, u ) ǫ k , Ω k �� ∞ �� IOA Alg: Given data k =0 Initialize x 0 ∈ R n , u 1 ∈ argmax f ( x 0 , u ) , U 0 ← { u 1 } u ∈ Ω 0 Loop over k : 1. Compute any x k +1 such that Θ U k ( x k +1 ) ≥ − ǫ k 2. Compute any u ′ ∈ argmax f ( x k +1 , u ) exactly u ∈ Ω k 3. Augment U k +1 ← U k ∪ { u ′ } a. Ω k ⊆ U and ǫ k ∈ [0 , 1] with lim k →∞ ǫ k = 0 b. Ω k grows dense in U Assumes: c. min x ∈ R n max u ∈ Ω k f ( x, u ) has a solution for all k US-Mexico 2018 7

  14. Result Theorem [Polak] Given assumptions on f and IOA Alg. Then, for any accumulation point x ∗ of { x k } ∞ k =1 , Θ( x ∗ ) = 0 . Thus, 0 ∈ ∂ Ψ( x ∗ ) . Basic idea is that as IOA progresses: 1. sequence of finite max functions Ψ Ω k ( x ) = max u ∈ Ω k f ( x, u ) are arbitrarily good approximations of Ψ( x ) 2. sequence of optimality measures Θ Ω k ( x ) are arbitrarily good approximations of the optimality measure Θ( x ) US-Mexico 2018 8

  15. When the Derivatives Start Hiding: Simulation-Based Optimization x ∈ R n { h ( x ; S ( x )) : c I [ x, S ( x )] ≤ 0 , c E [ x, S ( x )] = 0 } min ⋄ S : R n → C p simulation output, often “noisy” (even when deterministic) ⋄ Derivatives ∇ x S often unavailable or prohibitively expensive to obtain/approximate directly ⋄ S can contribute to objective and/or constraints ⋄ Single evaluation of S could take seconds/minutes/hours/. . . ⇒ Evaluation is a bottleneck for optimization ⋄ This talk: h ( x ; S ( x )) = max u ∈U f ( x, u ) Functions of complex (numerical) simulations arise everywhere US-Mexico 2018 9

  16. Derivative-Free Inexact Outer Approximation Main task: Compute sufficiently accurate approximation of � ξ 0 �� Ψ Ω k ( x k ) − f ( x k , u ) ξ 0 + � ξ � 2 � � � �� Θ Ω k ( x k ) = − min : u ∈ Ω k : ∈ co ∇ x f ( x k , u ) ξ 2 ξ 0 ,ξ for which Θ Ω k ( x k ) ≤ ǫ k is attainable when ⋄ ∇ f values unavailable ⋄ f ( x, u ) evaluations expensive US-Mexico 2018 10

  17. Derivative-Free Inexact Outer Approximation Main task: Compute sufficiently accurate approximation of � ξ 0 �� Ψ Ω k ( x k ) − f ( x k , u ) ξ 0 + � ξ � 2 � � � �� Θ Ω k ( x k ) = − min : u ∈ Ω k : ∈ co ∇ x f ( x k , u ) ξ 2 ξ 0 ,ξ for which Θ Ω k ( x k ) ≤ ǫ k is attainable when ⋄ ∇ f values unavailable ⋄ f ( x, u ) evaluations expensive Approach Phase 1 Inner iterations to obtain x k +1 an approximate minimizer of min x Ψ U k ( x ) → Manifold sampling, trust-region approach f ( x k +1 , u ) Phase 2 Solve argmax u ∈ Ω k US-Mexico 2018 10

  18. Model-Based Approximation for Inner Solve of min x Ψ U k ( x ) Associate with each u j ∈ U k a model about primal iterate y t ( y t → t x k +1 ): Fully Linear Models m t j fully linear model of f ( · , u j ) on B ( y t , ∆) if there exist constants κ j, ef and κ j, eg independent of y t and ∆ with | f ( y t + s, u j ) − m t j ( y t + s ) | ≤ κ j, ef ∆ 2 ∀ s ∈ B (0 , ∆) �∇ x f ( y t + s, u j ) − ∇ m t j ( y t + s ) � ≤ κ j, eg ∆ ∀ s ∈ B (0 , ∆) [Conn, Scheinberg, Vicente; SIAM, 2009] US-Mexico 2018 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend