depth and regularity of powers of sum of ideals
play

Depth and regularity of powers of sum of ideals Ngo Viet Trung 1 - PowerPoint PPT Presentation

Depth and regularity of powers of sum of ideals Ngo Viet Trung 1 Institute of Mathematics Vietnamese Academy of Science and Technology Tehran, November 2015 1 Joint work with H.T. Ha (New Orleans) and T.N. Trung (Hanoi) Depth and regularity Let


  1. Depth and regularity of powers of sum of ideals Ngo Viet Trung 1 Institute of Mathematics Vietnamese Academy of Science and Technology Tehran, November 2015 1 Joint work with H.T. Ha (New Orleans) and T.N. Trung (Hanoi)

  2. Depth and regularity Let R be a polynomial ring over a field k . Let M be a f.g. graded R -module. Let 0 → F s → · · · F 0 → M be a graded minimal free resolution. depth M = dim R − s , reg M = max { d ( F i ) − i | i = 0 , ..., s } , where d ( F i ) := maximum degree of the generators of F i .

  3. Depth and regularity Let R be a polynomial ring over a field k . Let M be a f.g. graded R -module. Let 0 → F s → · · · F 0 → M be a graded minimal free resolution. depth M = dim R − s , reg M = max { d ( F i ) − i | i = 0 , ..., s } , where d ( F i ) := maximum degree of the generators of F i . In general, depth M and reg M can be defined in terms of the local cohomology modules of M .

  4. Powers of ideals Let Q be a homogeneous ideal in a polynomial ring R .

  5. Powers of ideals Let Q be a homogeneous ideal in a polynomial ring R . Problem : to study the functions depth R / Q n and reg R / Q n . Brodmann: depth R / Q n = const for n ≫ 0. Cutkosky-Herzog-T, Kodiyalam: reg R / Q n = dn + e for n ≫ 0.

  6. Powers of ideals Let Q be a homogeneous ideal in a polynomial ring R . Problem : to study the functions depth R / Q n and reg R / Q n . Brodmann: depth R / Q n = const for n ≫ 0. Cutkosky-Herzog-T, Kodiyalam: reg R / Q n = dn + e for n ≫ 0. In general, it is a hard problem. There are partial results, e.g. by Herzog-Hibi, Herzog-Vladiou: depth for monomial ideals, Eisenbud-Harris, Eisenbud-Ulrich: regularity for zero-dimensional ideas.

  7. Sum of ideals Let A = k [ x 1 , . . . , x r ] and B = k [ y 1 , . . . , y s ]. Let I ⊂ A and J ⊂ B be nonzero proper ideals. Let R = k [ x 1 , . . . , x r , y 1 , . . . , y s ]. We also use I , J for the ideals generated by I , J in R .

  8. Sum of ideals Let A = k [ x 1 , . . . , x r ] and B = k [ y 1 , . . . , y s ]. Let I ⊂ A and J ⊂ B be nonzero proper ideals. Let R = k [ x 1 , . . . , x r , y 1 , . . . , y s ]. We also use I , J for the ideals generated by I , J in R . Problem : To estimate depth R / ( I + J ) n and reg R / ( I + J ) n in terms of I and J .

  9. Sum of ideals Let A = k [ x 1 , . . . , x r ] and B = k [ y 1 , . . . , y s ]. Let I ⊂ A and J ⊂ B be nonzero proper ideals. Let R = k [ x 1 , . . . , x r , y 1 , . . . , y s ]. We also use I , J for the ideals generated by I , J in R . Problem : To estimate depth R / ( I + J ) n and reg R / ( I + J ) n in terms of I and J . The simplest case: J = ( y ) ⊂ B = k [ y ] ?

  10. Sum of ideals Let A = k [ x 1 , . . . , x r ] and B = k [ y 1 , . . . , y s ]. Let I ⊂ A and J ⊂ B be nonzero proper ideals. Let R = k [ x 1 , . . . , x r , y 1 , . . . , y s ]. We also use I , J for the ideals generated by I , J in R . Problem : To estimate depth R / ( I + J ) n and reg R / ( I + J ) n in terms of I and J . The simplest case: J = ( y ) ⊂ B = k [ y ] ? Proposition : depth A [ x ] / ( I , x ) n = min i ≤ n depth A / I i , reg A [ x ] / ( I , x ) n = max i ≤ n { reg A / I i − i } + n .

  11. Motivation Geometry : Fiber product of two varieties X × k Y R / I + J = ( A / I ) ⊗ k ( B / J )

  12. Motivation Geometry : Fiber product of two varieties X × k Y R / I + J = ( A / I ) ⊗ k ( B / J ) Combinatoric : Edge ideal of a graph (or hypergraph) I ( G ) := ( x i x j | { i , j } ∈ G ) . If G = G 1 ⊔ G 2 , then I ( G ) = I ( G 1 ) + I ( G 2 )

  13. Estimation by approximation Set Q i := I n + I n − 1 J + · · · + I n − i J i , i = 0 , . . . , n . Then I n = Q 0 ⊂ Q 1 ⊂ · · · ⊂ Q n = ( I + J ) n ,

  14. Estimation by approximation Set Q i := I n + I n − 1 J + · · · + I n − i J i , i = 0 , . . . , n . Then I n = Q 0 ⊂ Q 1 ⊂ · · · ⊂ Q n = ( I + J ) n , 0 → Q i / Q i − 1 → R / Q i − 1 → R / Q i → 0 . We can estimate depth and reg of R / ( I + J ) n in terms of Q i / Q i − 1

  15. Estimation by approximation Set Q i := I n + I n − 1 J + · · · + I n − i J i , i = 0 , . . . , n . Then I n = Q 0 ⊂ Q 1 ⊂ · · · ⊂ Q n = ( I + J ) n , 0 → Q i / Q i − 1 → R / Q i − 1 → R / Q i → 0 . We can estimate depth and reg of R / ( I + J ) n in terms of Q i / Q i − 1 Lemma : Q i / Q i − 1 ∼ = I n − i J i / I n − i +1 J i .

  16. Estimation by approximation Set Q i := I n + I n − 1 J + · · · + I n − i J i , i = 0 , . . . , n . Then I n = Q 0 ⊂ Q 1 ⊂ · · · ⊂ Q n = ( I + J ) n , 0 → Q i / Q i − 1 → R / Q i − 1 → R / Q i → 0 . We can estimate depth and reg of R / ( I + J ) n in terms of Q i / Q i − 1 Lemma : Q i / Q i − 1 ∼ = I n − i J i / I n − i +1 J i . 0 → Q i / Q i − 1 → R / I n − i +1 J i → R / I n − i J i → 0 . Hoa-Tam: depth R / IJ = depth A / I + depth B / J + 1, reg R / IJ = reg A / I + reg B / J + 1.

  17. First bounds Theorem : ( I + J ) n ≥ � depth R i ∈ [1 , n − 1] , j ∈ [1 , n ] { depth A / I n − i + depth B / J i + 1 , min depth A / I n − j +1 + depth B / J j } ,

  18. First bounds Theorem : ( I + J ) n ≥ � depth R i ∈ [1 , n − 1] , j ∈ [1 , n ] { depth A / I n − i + depth B / J i + 1 , min depth A / I n − j +1 + depth B / J j } , ( I + J ) n ≤ � reg R i ∈ [1 , n − 1] , j ∈ [1 , n ] { reg A / I n − i +reg B / J i +1 , reg A / I n − j +1 +reg B / J j } . max

  19. First bounds Theorem : ( I + J ) n ≥ � depth R i ∈ [1 , n − 1] , j ∈ [1 , n ] { depth A / I n − i + depth B / J i + 1 , min depth A / I n − j +1 + depth B / J j } , ( I + J ) n ≤ � reg R i ∈ [1 , n − 1] , j ∈ [1 , n ] { reg A / I n − i +reg B / J i +1 , reg A / I n − j +1 +reg B / J j } . max The inequality is ‘almost’ an equality.

  20. First bounds Theorem : ( I + J ) n ≥ � depth R i ∈ [1 , n − 1] , j ∈ [1 , n ] { depth A / I n − i + depth B / J i + 1 , min depth A / I n − j +1 + depth B / J j } , ( I + J ) n ≤ � reg R i ∈ [1 , n − 1] , j ∈ [1 , n ] { reg A / I n − i +reg B / J i +1 , reg A / I n − j +1 +reg B / J j } . max The inequality is ‘almost’ an equality. The maximum of one of the two formulas on the right sides can be attained separately.

  21. First bounds Theorem : ( I + J ) n ≥ � depth R i ∈ [1 , n − 1] , j ∈ [1 , n ] { depth A / I n − i + depth B / J i + 1 , min depth A / I n − j +1 + depth B / J j } , ( I + J ) n ≤ � reg R i ∈ [1 , n − 1] , j ∈ [1 , n ] { reg A / I n − i +reg B / J i +1 , reg A / I n − j +1 +reg B / J j } . max The inequality is ‘almost’ an equality. The maximum of one of the two formulas on the right sides can be attained separately. No hope for exact formulas.

  22. Estimation by decomposition One can find exact formulas for depth and regularity of ( I + J ) n / ( I + J ) n +1 .

  23. Estimation by decomposition One can find exact formulas for depth and regularity of ( I + J ) n / ( I + J ) n +1 . Lemma : ( I + J ) n / ( I + J ) n +1 = I i / I i +1 ⊗ k J j / J j +1 � � � . i + j = n

  24. Estimation by decomposition One can find exact formulas for depth and regularity of ( I + J ) n / ( I + J ) n +1 . Lemma : ( I + J ) n / ( I + J ) n +1 = I i / I i +1 ⊗ k J j / J j +1 � � � . i + j = n Goto-Watanabe: Formula for the local cohomology modules of M ⊗ k N , where M and N are f.g. graded R -modules. From this it follows: depth M ⊗ k N = depth M + depth N , reg M ⊗ k N = reg M + reg N .

  25. Second bounds Theorem : depth( I + J ) n / ( I + J ) n +1 = min i + j = n { depth I i / I i +1 + depth J j / J j +1 } , reg( I + J ) n / ( I + J ) n +1 = max i + j = n { reg I i / I i +1 + reg J j / J j +1 } .

  26. Second bounds Theorem : depth( I + J ) n / ( I + J ) n +1 = min i + j = n { depth I i / I i +1 + depth J j / J j +1 } , reg( I + J ) n / ( I + J ) n +1 = max i + j = n { reg I i / I i +1 + reg J j / J j +1 } . In general, one can not compute the invariants of R / ( I + J ) n from the invariants of ( I + J ) i / ( I + J ) i +1 for i ≤ n .

  27. Second bounds Theorem : depth( I + J ) n / ( I + J ) n +1 = min i + j = n { depth I i / I i +1 + depth J j / J j +1 } , reg( I + J ) n / ( I + J ) n +1 = max i + j = n { reg I i / I i +1 + reg J j / J j +1 } . In general, one can not compute the invariants of R / ( I + J ) n from the invariants of ( I + J ) i / ( I + J ) i +1 for i ≤ n . Corollary : depth R / ( I + J ) n ≥ i + j ≤ n − 1 { depth I i / I i +1 + depth J j / J j +1 } , min reg R / ( I + J ) n ≤ i + j ≤ n − 1 { reg I i / I i +1 + reg J j / J j +1 } . max

  28. Second bounds Theorem : depth( I + J ) n / ( I + J ) n +1 = min i + j = n { depth I i / I i +1 + depth J j / J j +1 } , reg( I + J ) n / ( I + J ) n +1 = max i + j = n { reg I i / I i +1 + reg J j / J j +1 } . In general, one can not compute the invariants of R / ( I + J ) n from the invariants of ( I + J ) i / ( I + J ) i +1 for i ≤ n . Corollary : depth R / ( I + J ) n ≥ i + j ≤ n − 1 { depth I i / I i +1 + depth J j / J j +1 } , min reg R / ( I + J ) n ≤ i + j ≤ n − 1 { reg I i / I i +1 + reg J j / J j +1 } . max These bounds are not related to the first given bounds.

  29. Asymptotic depth The asymptotic values of depth R / ( I + J ) n can be computed from that of depth( I + J ) n / ( I + J ) n +1 and hence from those of depth A / I n and depth B / J n .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend