dense optical flow estimation in image sequences and
play

Dense optical flow estimation in image sequences and disparity map - PowerPoint PPT Presentation

Dense optical flow estimation in image sequences and disparity map computation for stereo pairs applied to 3D reconstruction Javier Snchez Prez Universidad de Las Palmas de Gran Canaria Departamento de Informtica y Sistemas Grupo de


  1. Dense optical flow estimation in image sequences and disparity map computation for stereo pairs applied to 3D reconstruction Javier Sánchez Pérez Universidad de Las Palmas de Gran Canaria Departamento de Informática y Sistemas Grupo de Análisis Matemático de Imágenes

  2. Contents • Optical flow methods – Standard approach – Considering colour images – Making the method symmetric • Stereoscopic methods – Epipolar geometry – Standard approach – Colour method – Symmetrical method • Main contributions and conclusions

  3. Optical flow Standard approach • Variational approach • Energy minimization • Large displacements r • Numerical scheme h ( x , y ) • Experimental results

  4. Variational approach • Energy r r r ∫ ∫ = ⋅ + α Φ ⋅ E ( h ) L ( h ) dw ( h ) dw Ω Ω r ( ) t = h u ( x , y ), v ( x , y ) r ( ) 2 = − + + L ( h ) I ( x , y ) I ( x u ( x , y ), y v ( x , y ) ) 1 2 ( ) r r r Φ = ∇ ⋅ ∇ ⋅ ∇ t h h D ( I ) h 1

  5. Regularizing term • Nagel-Enkelmann operator ⎧ ⎫ ⎛ ⎞ − 2 I I I ⎪ ⎪ 1 ( ) ⎜ ⎟ y x y ∇ = + γ 2 D I Id ⎨ ⎬ ⎜ ⎟ 2 − 2 I I I ∇ + γ 2 ⎪ ⎪ I 2 ⎝ ⎠ ⎩ ⎭ x y x

  6. Energy minimization • Associated Euler-Lagrange equations ) ( ) r r ∂ ⎛ ⎞ I r r ( ( ) = ∇ ∇ + − + + ⎜ 2 ⎟ 0 C div D I u I I ( x h ) ( x h ) 1 1 2 ∂ x ⎝ ⎠ ) ( ) r r ⎛ ⎞ ∂ I r r ( ( ) ⎜ ⎟ = ∇ ∇ + − + + 0 C div D I v I I ( x h ) 2 ( x h ) ⎜ ⎟ 1 1 2 ∂ y ⎝ ⎠

  7. Energy minimization • Gradient descent ( ) r r ∂ ∂ ⎛ ⎞ u I r r ( ( ) ) = ∇ ∇ + − + + ⎜ ⎟ C div D I u I I ( x h ) 2 ( x h ) 1 1 2 ∂ ∂ t ⎝ x ⎠ ( ) r ⎛ ⎞ r ∂ ∂ v I r r ( ( ) ) = ∇ ∇ + − + ⎜ ⎟ + C div D I v I I ( x h ) 2 ( x h ) ⎜ ⎟ 1 1 2 ∂ ∂ t y ⎝ ⎠ • Anisotropic diffusion – diffusion tensor ( ) ⎧ ∇ ↑ ∇ I div u ∂ ⎪ u ⊥ ∇ = ∇ ∇ ⇒ I div ( D ( I ) u ) ⎨ 1 ∇ ↓ ∇ ∂ I div ( u ) t ⎪ ⎩ 2

  8. Large displacements • Pyramidal approach ) ( ) r ⎛ ⎞ r ∂ ∂ ( ( ) z u I r r ⎜ ⎟ = ∇ ∇ + − + + z z z z C div D I u I I ( x h ) 2 ( x h ) ⎜ ⎟ 1 z 1 2 z z ∂ ∂ t x ⎝ ⎠ ) ( ) r ⎛ ⎞ r ∂ ( ( ) ∂ z v I r r ⎜ ⎟ = ∇ ∇ + − + + z z z z C div D I v I I ( x h ) 2 ( x h ) ⎜ ⎟ 1 z 1 2 z z ∂ ∂ t y ⎝ ⎠ ( ) ( ) = z z z I x , y I 2 x , 2 y > > > → z z z 0 K 0 1 n ( ) ( ) ( ) ( ) → → → → u , v u , v u , v u , v K z z z z z z 0 0 1 1 n n

  9. Large displacements

  10. Large displacements • Scale-Space approach ) ( ) r ⎛ ⎞ r ∂ ∂ σ ( ( ) u I r r ⎜ ⎟ = ∇ σ ∇ + σ − σ + + σ C div D I u I I ( x h ) 2 ( x h ) ⎜ ⎟ σ σ σ 1 1 2 ∂ ∂ t x ⎝ ⎠ ) ( ) r ⎛ ⎞ r ∂ ∂ σ ( ( ) v I r r ⎜ ⎟ = ∇ σ ∇ + σ − σ + + σ C div D I v I I ( x h ) 2 ( x h ) ⎜ ⎟ σ σ σ 1 1 2 ∂ ∂ t y ⎝ ⎠ σ = I G * I σ σ > σ > > σ → .... 0 0 1 n → → → ( u , v ) ( u , v ) ..... ( u n v , ) σ σ σ σ σ σ 0 0 1 1 n

  11. Large displacements

  12. Invariance • Invariance under gray level shifts α = C 2 ∇ max I ( x , y ) ( x , y ) ν ∫ = s H ( z ) dz ∇ I 0

  13. Numerical scheme ⎛ ⎞ + + + + + − + − k 1 k 1 k 1 k 1 d d u u d d u u ⎜ ⎟ + + − − i 1 , j i , j i 1 , j i , j + i 1 , j i , j i 1 , j i , j + ⎜ 2 2 ⎟ 2 h 2 h 1 1 ⎜ ⎟ + + + + + k 1 − k 1 + k 1 − k 1 f f u u f f u u ⎜ ⎟ + + − − i , j 1 i , j i , j 1 i , j + i , j 1 i , j i , j 1 i , j + ⎜ ⎟ + − k 1 k 2 2 u u 2 h 2 h ⎜ ⎟ i , j i , j 1 1 = + C ∆ t ⎜ + + − + + + − + ⎟ k 1 k 1 k 1 k 1 e e u u e e u u + + + + − − − − + i 1 , j 1 i , j i 1 , j 1 i , j + i 1 , j 1 i , j i 1 , j 1 i , j − ⎜ ⎟ 2 2 2 2 h 2 2 h ⎜ ⎟ 1 1 ⎜ ⎟ + + − + + + − + k 1 k 1 k 1 k 1 e e u u e e u u ⎜ ⎟ + − + − − + − + i 1 , j 1 i , j i 1 , j 1 i , j i 1 , j 1 i , j i 1 , j 1 i , j − − ⎜ ⎟ 2 2 2 2 h 2 2 h ⎠ ⎝ 1 1 ∂ ( ( ) ( ) ) I ( ) σ − + + 2 , + + k k k k I x , y I x u , y v x u , y v σ σ 1 , i , j i , j 2 , i , j i , j i , j i , j i , j i , j i , j i , j ∂ x

  14. Experimental results • Squares sequence

  15. Experimental results ( ) ( ) ⎛ ⎞ ~ ~ 2 2 σ σ = − + − Error Average u u v v ⎜ ⎟ i , j i , j i , j i , j ⎝ ⎠ ( ) ( ) ⎛ ⎞ ⎛ ⎞ ~ ~ σ σ t u , v , 1 u , v , 1 ⎜ ⎟ ⎜ ⎟ = i , j i , j i , j i , j Error Average arccos ( ) ( ) ( ) ( ) ⎜ ⎟ ⎜ ⎟ ~ ~ ⎜ ⎟ σ σ 2 + 2 + 2 + 2 + u v 1 u v 1 ⎝ ⎠ ⎝ ⎠ i , j i , j i , j i , j

  16. Experimental results • Square sequence

  17. Experimental results Comparison with other methods in Barron et al. 100% dense methods Method Ang. Error Stand. Dev. Horn y Schunk 32,81º 13,67º Nagel 34,57º 14,38º Anandan 31,46º 18,31º Singh 46,12º 18,64º Ours 10,97º 9,60º

  18. Experimental results • Taxi sequence

  19. Experimental results • Yosemite sequence

  20. Experimental results Comparison with other methods in Barron et al. 100% dense methods Method Ang. Error Stand. Dev. Horn y Schunk 9,78º 16,19º Nagel 10,22º 16,51º Anandan 13,36º 15,64º Singh 10,03º 13,13º Ours 5,53º 7,40º

  21. Optical flow for color images • Energy ( ) r r r r 3 ( ) r r ∑∫ ∫ = − + + α ∇ ∇ ∇ 2 t E ( h ) I ( x ) I ( x h ) h D I h 1 , i 2 , i 1 , max = i 1 { } ∇ = ∇ ∇ ≥ ∇ ∀ = I ( x , y ) I I I i 1 , 2 , 3 max i i i 0 0

  22. Results • Cube sequence

  23. Symmetrical optic flow r h 1 r h 2 • Composed energy r r r r r r = + E ( h , h ) E ( h , h ) E ( h , h ) 1 2 1 1 2 2 1 2

  24. Variational approach • Energies ( ) r r r r r r r ⎛ ⎞ ∫ ∫ ∫ h = + α Φ + β ψ + 2 ⎜ ⎟ E ( h , h ) L ( h ) ( h ) h h 1 ⎝ ⎠ 1 1 2 1 1 1 2 Ω Ω Ω ( ) r r r r r r r ⎛ ⎞ ∫ ∫ ∫ h = + α Φ + β ψ + 2 ⎜ ⎟ E ( h , h ) L ( h ) ( h ) h h 2 ⎝ ⎠ 2 1 2 2 2 2 1 Ω Ω Ω

  25. Energy minimization • Choosing the ψ function ⎧ s ⎪ s ψ = ( s ) ⎨ s − γ 1 e ⎪ γ ⎩ • Iterative scheme r r r r r r + + + + = + n 1 n 1 n 1 n n n 1 E ( h , h ) E ( h , h ) E ( h , h ) 1 2 1 1 2 2 1 2

  26. Experimental results • Squares sequence r h Occlusions 1 Euclid. error Ang. error Non- 0.16 0.50º symmetric Symmetric 0.081 0.18º

  27. Experimental results • Marble blocks (H. H. Nagel) r h 1 Euclid. error Ang. error Non- 0.37 9.4º symmetric Symmetric 0.17 5.2º

  28. Stereoscopic vision • Epipolar geometry • Variational approach • Energy minimization • Experimental results

  29. Epipolar geometry Fundamental matrix m t 2 F m 1 =0 Epipolar lines I 2 I 1 m 1 m 2 C 2 C 1 M

  30. Variational approach • Embedding the epipolar geometry I 2 I 1 m 1 r m 1 h m 2 λ ⎛ ⎞ a ⎜ ⎟ λ r ⎛ ⎞ u ( ( x , y )) = ⋅ ⎜ ⎟ ⎜ b ⎟ F m = h ⎜ ⎟ 1 λ ⎜ ⎟ v ( ( x , y )) ⎝ ⎠ c ⎝ ⎠

  31. Variational approach • Energy ( ) r r r ( ) ∫ ∫ λ = − + λ + α ∇ λ ⋅ ∇ ⋅ ∇ λ 2 E ( ) I ( x ) I ( x h ( )) D I 1 2 1 λ λ ⎛ ⎞ ∂ ∂ ⎛ ⎞ I I r r ⎜ ⎟ − a 2 ( x ) b ⎜ 2 ⎟ ( x ) ⎜ ⎟ ( ) ∂ ∂ ∂ λ y ⎝ x ⎠ r r ⎝ ⎠ ( ( ) ) ( ) λ = ∇ ∇ λ + − C div D I I ( x ) I ( x ) 2 1 2 ∂ t + 2 2 a b

  32. Experimental results • Hervé’s face

  33. Experimental results • Inria Library

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend