deformable models
play

Deformable Models A powerful, model- A powerful, model -based - PDF document

1. Deformable and Functional Models In Medical Image Analysis 2. A Tensor Algebraic Framework for Image Synthesis, Analysis & Recognition Demetri Terzopoulos Terzopoulos Demetri Computer Science Department Computer Science Department


  1. 1. Deformable and Functional Models In Medical Image Analysis 2. A Tensor Algebraic Framework for Image Synthesis, Analysis & Recognition Demetri Terzopoulos Terzopoulos Demetri Computer Science Department Computer Science Department University of California, Los Angeles University of California, Los Angeles Deformable Models A powerful, model- A powerful, model -based medical image based medical image A powerful, model-based medical image analysis approach analysis approach analysis approach • • Proposed in computer vision and graphics Proposed in computer vision and graphics • Proposed in computer vision and graphics • Actively explored in medical image analysis Actively explored in medical image analysis • • Actively explored in medical image analysis • Combine bottom Combine bottom- -up and top up and top- -down analysis down analysis • • Combine bottom-up and top-down analysis • Accommodate shape & motion constraints/variability Accommodate shape & motion constraints/variability • • Accommodate shape & motion constraints/variability • • Incorporate a priori anatomical knowledge Incorporate a priori anatomical knowledge • Incorporate a priori anatomical knowledge • Support intuitive interaction mechanisms • Support intuitive interaction mechanisms • Support intuitive interaction mechanisms

  2. Computing Visible Surfaces from Scattered Visual Data [Terzopoulos, 1984] Thin Thin- -plate plate spline spline under tension under tension Thin-plate spline under tension { } { } z x x y y z z c c z ( , ), , data point: ( , ), , 1 ∑ 1 ∑ k k k k k k k k = − E = c z − f x y E c z f x y 2 [ ( , ) ] 2 [ ( , ) ] d k k k k d k k k k z z k 2 2 k k k c c k k f x y f x y ( , ) ( , ) y y x k y x k y ( , ) ( , ) k k x x ρ ( [ ) ( ) ] [ ( ) ( ) ] 1 1 ∫∫ ∫∫ = ρ τ + + − τ + + = τ + + − τ + + E f f 2 f 2 f 2 f 2 f 2 d x d y E f f 2 f 2 f 2 f 2 f 2 d x d y ( ) ( 1 ) 2 ( ) ( 1 ) 2 x y xx xy yy x y xx xy yy 2 2 Discontinuity-Preserving Surface Reconstruction Make Make “ “rigidity rigidity” ” & & “ “tension tension” ” functions of (x,y) functions of (x,y) •Tangent discontinuities: Tangent discontinuities: • τ = τ x y = x y ( , ) 1 ( , ) 1 •Jump discontinuities: Jump discontinuities: • ρ = ρ = x y x y ( , ) 0 ( , ) 0

  3. Snakes: Active Contours [Kass, Witkin, Terzopoulos, 1987] • Curve representation: Curve representation: • • Curve representation: ⎡ ⎤ ⎡ x u t ⎤ x u t ( , ) ( , ) = ∈ = ∈ u t u u t ⎢ ⎥ u c ( , ) ⎢ ⎥ ; [ 0 , 1 ] c ( , ) ; [ 0 , 1 ] y u t ⎣ y u t ⎦ ⎣ ( , ) ⎦ ( , ) 2 2 ∂ 2 ∂ ∂ 2 ∂ 2 2 1 c c 1 c c ∫ 1 ∫ 1 = + E = w + w d u • Curve deformation energy: Curve deformation energy: E w w d u • • Curve deformation energy: ( c ) ( c ) ∂ ∂ 1 ∂ 2 ∂ 1 u 2 u 2 u u 2 2 2 0 0 µ + γ + δ = µ + γ + δ = & & & E & & & E c c ( c ) f • Equations of motion: • Equations of motion: c c ( c ) f • Equations of motion: c c ⎛ ⎞ ∂ ∂ ∂ ⎛ ∂ ⎞ ∂ ⎛ ∂ ⎞ ∂ ∂ ⎛ ⎞ 2 2 2 2 c c c c ⎜ ⎟ µ + γ − + ⎜ ⎟ = µ + γ − ⎜ w ⎟ + w = & & & ⎜ w ⎟ w & & & c c f c c ⎜ ⎟ f ⎜ ⎟ ∂ ∂ ∂ ∂ ∂ 1 ∂ ∂ 2 ∂ u ⎝ 1 u ⎠ u 2 2 u 2 u ⎝ u ⎠ u 2 u 2 ⎝ ⎠ ⎝ ⎠ Image Analysis Using Snakes External forces come from an image External forces come from an image External forces come from an image = −∇ = −∇ P P f ( c ) f ( c ) P x y P x y • Image potential: Image potential: • • Image potential: ( , ) ( , )

  4. Motion Tracking in Video Time Time- -varying image potential varying image potential Time-varying image potential P x y t P x y t ( , , ) ( , , ) Snake-Based Tracking (Blake & (Blake & Isard Isard, Oxford University) , Oxford University) (Blake & Isard, Oxford University)

  5. Discretization • Continuous equations of motion Continuous equations of motion • • Continuous equations of motion ⎛ ⎞ ∂ ∂ ∂ ⎛ ∂ ⎞ ∂ ⎛ ∂ ⎞ ∂ ∂ ⎛ ⎞ 2 2 2 2 c c c c ⎜ ⎟ µ + γ − + ⎜ ⎟ = µ + γ − ⎜ w ⎟ + w = & & & ⎜ w ⎟ w & & & c c f c c ⎜ ⎟ f ⎜ ⎟ ∂ ∂ ∂ ∂ ∂ u ⎝ 1 1 ∂ u ⎠ ∂ u 2 2 ∂ u u ⎝ u ⎠ u 2 u 2 2 ⎝ 2 ⎠ ⎝ ⎠ • Discrete equations of motion • Discrete equations of motion • Discrete equations of motion + + = + + = & & & & & & M c D c Kc f M c D c Kc f Mass matrix Stiffness External forces matrix Damping matrix Snake Stiffness Matrix ⎡ ⎤ ⎡ a b c c b ⎤ a b c c b N − N − 0 0 0 N − 2 N − 1 Finite differences: Finite differences: 0 0 0 2 1 Finite differences: ⎢ ⎥ ⎢ ⎥ b a b c c b a b c c ⎢ ⎥ ⎢ ⎥ − N − 0 1 1 1 N 1 0 1 1 1 1 ⎢ ⎥ = = − ⎢ ⎥ = ih i = N − c b a b c ih i L N c b a b c c c ( ); 0 , L , 1 c c ( ); 0 , , 1 i i 0 1 2 2 2 ⎢ 0 1 2 2 2 ⎥ ⎢ ⎥ c b a b c c b a b c ⎢ ⎥ ⎢ ⎥ = = 1 2 3 3 3 1 2 3 3 3 K K ⎢ ⎥ ⎢ ⎥ ∂ − ∂ − O O O O O O O O O O c c c c c c ≈ + ≈ i + i ⎢ ⎥ i 1 i ⎢ ⎥ 1 ∂ ∂ u h c b a b c u h ⎢ c b a b c ⎥ ⎢ ⎥ − − − − − N − N − N − N − N − N 5 N 4 N 3 N 3 N 3 5 4 3 3 3 ⎢ ⎥ ⎢ ⎥ ∂ − + ∂ 2 − + 2 c c 2 c c c c b a b c c 2 c c c c b a b ≈ ≈ i + i i − ⎢ ⎥ i + 1 i i − 1 ⎢ N − N − N − N − N − ⎥ 1 1 N − 2 N − 4 N − 3 N − 2 N − 2 2 4 3 2 2 ∂ ∂ u h u 2 h 2 2 2 ⎢ b c c b a ⎥ ⎢ b c c b a ⎥ ⎣ ⎣ ⎦ ⎦ − − − − − N − N − N − N − N − N 1 N 1 N 3 N 2 N 1 1 1 3 2 1 + + + w + w w + w + w w w w w w 4 4 − − + = i − i + i − i i + a = 1 ; i 1 1 ; i + 2 ; i 1 2 ; i 2 ; i 1 a 1 ; 1 1 ; 2 ; 1 2 ; 2 ; 1 i i h 2 h 4 h 2 h 4 + w w + w w w w 2 2 2 2 + = − i − i i + b = − 1 ; i − 2 ; i 2 ; i 1 b 1 ; 2 ; 2 ; 1 i = i w = w ih h 2 h 4 w w ih h 2 h 4 ( ) ( ) i 1 ; i 1 1 ; 1 w w = w = w ih w w ( ih ) + ( ) = i + c = 2 ; i 1 c 2 ; 1 i 2 ; i 2 2 ; 2 i i h 4 h 4

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend