dark photon search with padme at lnf
play

Dark Photon search with PADME at LNF Gabriele Piperno for the PADME - PowerPoint PPT Presentation

Dark Photon search with PADME at LNF Gabriele Piperno for the PADME collaboration Particles and Nuclei International Conference - Beijing, China - September 3, 2017 Dark Photon search with PADME at LNF - Gabriele Piperno - PANIC 2017 The Dark


  1. Dark Photon search with PADME at LNF Gabriele Piperno for the PADME collaboration Particles and Nuclei International Conference - Beijing, China - September 3, 2017

  2. Dark Photon search with PADME at LNF - Gabriele Piperno - PANIC 2017 The Dark Matter problem Evidences : • spiral galaxies • Cosmic Microwave Background • gravitational lensing • galaxy clusters • Big Bang Nucleosynthesis • large scale structures Properties : Open questions : • stable (half life ∼ universe age) • DM nature • interaction(s) w/ SM • cold (non relativistic) • A whole new dark sector? • gravitational force • dark sector forces? • non baryonic 2/18

  3. Dark Photon search with PADME at LNF - Gabriele Piperno - PANIC 2017 Dark Photon Dark Sector Possible solution to the DM elusiveness: DM does not interact directly w/ SM, but by Portals (A’) means of “portals”. • SM particles are neutral The simplest model under this symmetry adds a U(1) gauge • new field couples to the symmetry and its boson: SM w/ effective charge ε q the Dark Photon A’ Additionally the A’ could (partially) explain the (g-2) μ discrepancy A’ characteristics in the simplest model above: • 1 MeV < m A’ < 1 GeV A’ • ε ≳ 10 -3 Purely indicative numbers: it has been recently discarded as a solution 3/18

  4. Dark Photon search with PADME at LNF - Gabriele Piperno - PANIC 2017 Dark Photon production In e + /e - collisions Dark Photon can be produced in 3 main ways: A’ e - A’ e + e + γ N e + γ Annihilation Bremsstrahlung A’ π 0 , η γ Mesons dec. (after production) 4 /18

  5. Dark Photon search with PADME at LNF - Gabriele Piperno - PANIC 2017 Dark Photon decay Visible decays If DM particles w/ m DM < m A’ /2 do not exist: • A’ → SM (visible) decays A’ visible decays assuming • up to 2m μ , BR(e + e - ) = 1 (if m A’ > 2m e ) universal coupling ε q (q = charge) 1.00 e + − e 0.50 A’ lifetime proportional to: hadrons 1/( αε 2 m A’ ) 0.20 0.10 BR A' + − μ μ 0.05 + − W W 0.02 Invisible decays 0.01 If DM particles w/ m DM < m A’ /2 exist: 0.1 0.2 0.5 1.0 2.0 5.0 10.0 m (GeV /c ) 2 • A’ → DM (invisible) decays w/ (likely) BR ≃ 1 A' • SM decays suppressed by a factor ε 2 A’ lifetime proportional to: 1/( α D m A’ ) α D : A’ coupling constant to the Dark Sector 5/18

  6. Dark Photon search with PADME at LNF - Gabriele Piperno - PANIC 2017 Visible search status Techniques : target e − • beam dump (bremsstrahlung) shield γ ′ detector e − • A’ decay products detection after high z E γ ′ e + E 0 target (A’ production) + shield (SM absorption) L tot L sh L dec • fixed target (bremsstrahlung, -2 10 annihilation) KLOE 2014 KLOE 2013 B A B AR ε 2009 • bump hunt in invariant mass (g-2) e WASA spectrum, displaced vertices APEX HADES (g-2) 2 ± σ B A B AR µ PHENIX A1 BESIII 2014 favored • meson decay NA48/2 -3 10 • only if A’ couples w/ quarks • old experiments reanalysis E774 E141 (g-2) μ excluded in the simplest -4 10 model, but still a lot of interest -2 -1 10 10 1 10 2 m [GeV/c ] ' γ 6 /18

  7. Dark Photon search with PADME at LNF - Gabriele Piperno - PANIC 2017 Invisible search status Techniques : • DM scattering (bremsstrahlung) • missing mass search (annihilation) • detect by scattering the produced DM • kinematically constrained process • needed 4 parameters ( ε ,m A’ ,m DM , α D ) • no assumption on A’ decay chain .... − 2 10 K → π ν ν ε (g-2) ± 5 σ µ B A B AR 2017 favored 3 − 10 Not directly (g-2) NA64 comparable e 4 − 10 3 − − 2 − 1 10 10 10 1 10 m (GeV) A' 7 /18

  8. Dark Photon search with PADME at LNF - Gabriele Piperno - PANIC 2017 The PADME approach A’ search in e + e - annihilations looking for missing mass (invisible decay) in a kinematically constrained condition 2 MMiss for different M A' A' mass= 22 MeV A' mass= 22 MeV A' mass= 22 MeV A' mass= 22 MeV A' mass= 22 MeV A' mass= 22 MeV A' mass= 22 MeV A' mass= 22 MeV A' mass= 22 MeV A' mass= 22 MeV A' mass= 22 MeV A' mass= 20 MeV A' mass= 20 MeV A' mass= 20 MeV A' mass= 20 MeV A' mass= 20 MeV A' mass= 20 MeV A' mass= 20 MeV A' mass= 20 MeV A' mass= 20 MeV A' mass= 20 MeV A' mass= 20 MeV 600 A' mass= 18 MeV A' mass= 18 MeV A' mass= 18 MeV A' mass= 18 MeV A' mass= 18 MeV A' mass= 18 MeV A' mass= 18 MeV A' mass= 18 MeV A' mass= 18 MeV A' mass= 18 MeV A' mass= 18 MeV A' mass= 16 MeV A' mass= 16 MeV A' mass= 16 MeV A' mass= 16 MeV A' mass= 16 MeV A' mass= 16 MeV A' mass= 16 MeV A' mass= 16 MeV A' mass= 16 MeV A' mass= 16 MeV A' mass= 16 MeV ECAL A' mass= 14 MeV A' mass= 14 MeV A' mass= 14 MeV A' mass= 14 MeV A' mass= 14 MeV A' mass= 14 MeV A' mass= 14 MeV A' mass= 14 MeV A' mass= 14 MeV A' mass= 14 MeV A' mass= 14 MeV e - 500 A' mass= 12 MeV A' mass= 12 MeV A' mass= 12 MeV A' mass= 12 MeV A' mass= 12 MeV A' mass= 12 MeV A' mass= 12 MeV A' mass= 12 MeV A' mass= 12 MeV A' mass= 12 MeV A' mass= 12 MeV A' mass= 10 MeV A' mass= 10 MeV A' mass= 10 MeV A' mass= 10 MeV A' mass= 10 MeV A' mass= 10 MeV A' mass= 10 MeV A' mass= 10 MeV A' mass= 10 MeV A' mass= 10 MeV A' mass= 10 MeV (target) A' mass= 8 MeV A' mass= 8 MeV A' mass= 8 MeV A' mass= 8 MeV A' mass= 8 MeV A' mass= 8 MeV A' mass= 8 MeV A' mass= 8 MeV A' mass= 8 MeV A' mass= 8 MeV A' mass= 8 MeV γ 400 A' mass= 6 MeV A' mass= 6 MeV A' mass= 6 MeV A' mass= 6 MeV A' mass= 6 MeV A' mass= 6 MeV A' mass= 6 MeV A' mass= 6 MeV A' mass= 6 MeV A' mass= 6 MeV A' mass= 6 MeV e + A' mass= 4 MeV A' mass= 4 MeV A' mass= 4 MeV A' mass= 4 MeV A' mass= 4 MeV A' mass= 4 MeV A' mass= 4 MeV A' mass= 4 MeV A' mass= 4 MeV A' mass= 4 MeV A' mass= 4 MeV A' mass= 2 MeV A' mass= 2 MeV A' mass= 2 MeV A' mass= 2 MeV A' mass= 2 MeV A' mass= 2 MeV A' mass= 2 MeV A' mass= 2 MeV A' mass= 2 MeV A' mass= 2 MeV A' mass= 2 MeV 300 (beam) A’ (missing energy) 200 100 0 0 100 200 300 400 500 600 2 MMiss (MeV) • known beam energy and position m 2Miss = ( P beam + P e - P γ ) 2 • measured photon energy and position • minimal model dependent assumptions: A’ couples to leptons • coupling of any new light particle produced in e + e - annihilation can be limited : Dark Photon, Axion Like Particles, Dark Higgs 8/18

  9. Dark Photon search with PADME at LNF - Gabriele Piperno - PANIC 2017 The detector (high energy) e + /e - veto active target small angle • plastic scintillator bars • diamond (low z) calorimeter • 100 μ m thickness • 25 PbF 2 • info on beam time, 3 × 3 × 15 cm 3 spot size, e + number • 0-20 mrad ang. cov. electromagnetic calorimeter • 616 2.1 × 2.1 × 23 cm 3 BGO • cylindrical shape w/ central hole • 20-95 mrad ang. cov. • (1-2)%/ √ E e + beam • 550 MeV MBP-S dipole (upper part not shown) • 5000 e + per bunch • 0.5 T • 40 ns bunch, • 1 m lenght. × 23 cm gap every 20 ms 9 /18

  10. Dark Photon search with PADME at LNF - Gabriele Piperno - PANIC 2017 Detector top view (w/ signal) Signal: • single γ in the calorimeter • nothing in the other detector components A’ e - e + γ 3 m 10 /18

  11. Dark Photon search with PADME at LNF - Gabriele Piperno - PANIC 2017 Active target Test detector Features: • Diamond (low z, reduced brems.) • Dim.: 20 × 20 × 0.1 mm 3 • 16 horiz. × 16 vert. active graphitic strips (average informations on beam) • σ x-y (beam position) < 2 mm • in vacuum w/ movement system Test detector results Beam position scan 11 /18

  12. Dark Photon search with PADME at LNF - Gabriele Piperno - PANIC 2017 Electromagnetic calorimeter (1) Features: 616 BGO 2.1 × 2.1 × 23 cm 3 • σ E ≈ (1-2)%/ √ E @ 3 m from the target • high γ statistic • containment • cluster time resolution < 1 ns • angular resolution ≲ 1 mrad • angular coverage: [20,93] mrad • angular acceptance: [26,83] mrad • central hole for brems. to SAC (faster) 2° best choice, for free from L3 best choice, but very expensive Figura 1 : Schema del calorimetro dell’esperimento PADME, composto da 616 cristalli scintillanti di BGO, 21×21×230 mm 3 . 12 /18

  13. Dark Photon search with PADME at LNF - Gabriele Piperno - PANIC 2017 Electromagnetic calorimeter (2) Dipole gap limits the angular acceptance ECAL target SAC dipole side view a/ √ E ⊕ b/E ⊕ c M. Raggi et al., NIM 862, 31 (2017) Results w/ a 5 × 5 BGO (2 × 2 × 22 cm 3 ) matrix test 250 MeV and multiples 450 MeV and multiples 13 /18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend