dark matter neutrinos and inflation
play

Dark Matter, Neutrinos, and Inflation FNAL Theoretical Astrophysics: - PowerPoint PPT Presentation

Dark Matter, Neutrinos, and Inflation FNAL Theoretical Astrophysics: A Tradition of Finding Cosmic Probes of BSM Physics 1 Scott Dodelson 7/30/14 Dark Matter Searches With Cosmic Ray Anti-Matter 1.00 A M S h a s c o


  1. Dark Matter, Neutrinos, and Inflation � FNAL Theoretical Astrophysics: 
 A Tradition of Finding Cosmic Probes of BSM Physics � 1 � Scott Dodelson � 7/30/14 �

  2. Dark Matter � Searches With Cosmic Ray Anti-Matter ¡ 1.00 A M S h a s c o n fi r m e d Dot � Dashed: M Χ � 2.5 TeV, ΧΧ�ΦΦ� 2 Μ � 2 Μ � e E 3 x diff. flux GeV 2 � m 2 s sr � 1 PAMELA’s positron excess, 0.50 Dashed: M Χ � 3.0 TeV, ΧΧ�ΦΦ� 2 Π � 2 Π � with much greater precision � Solid: M Χ � 1.6 TeV, ΧΧ�ΦΦ� 2 e � , 2 Μ � , 2 Π � at 1:1:2 0.20 � e � �� e � � e � � Global fits find that both 0.10 dark matter and pulsar 0.05 models can account for the observed data � 0.02 e 1 5 10 50 100 E � GeV � Cholis ¡& ¡Hooper ¡2013 ¡ 2 � Scott Dodelson � 7/30/14 �

  3. Dark Matter � Searches With Cosmic Ray Anti-Matter ¡ Bergstr¨ om et al. (2013) 10 − 23 dashed: Fermi LAT 7 P A solid: AMS-02 (this work) M W The lack of spectral 10 − 24 features in the positron 10 − 25 excess strongly constrains h σ v i [cm 3 s − 1 ] dark matter annihilating to 10 − 26 charged leptons (as τ + τ � proposed by Hooper and 10 − 27 µ + µ � Xue 2013) � e + e � γ 10 − 28 e + e � 10 − 29 10 1 10 2 m χ [GeV] Bergstrom, ¡Cholis, ¡ ¡Hooper, ¡et ¡al. ¡2013 ¡ 3 � Scott Dodelson � 7/30/14 �

  4. Dark Matter � Searches With Gamma Rays ¡ Fermi is transforming indirect detection, and we have used this data set to perform many state-of- the-art dark matter searches, including: � � Using a large collection of multi- wavelength data, we have built an astrophysical model of the extragalactic diffuse gamma-ray emission, and placed constraints o n t h e c o n t r i b u t i o n f r o m Cholis, ¡ ¡Hooper, ¡McDermo; ¡2014 ¡ annihilating dark matter � 4 � Scott Dodelson � 7/30/14 �

  5. Dark Matter � Searches With Gamma Rays ¡ Fermi is transforming indirect detection, and we have used this data set to perform many state-of- 50 XX Æ b b the-art dark matter searches, m X = 100 GeV 20 including: � Number of Sources 10 � 5 W e h a v e s e a r c h e d f o r a s v = 2 3 . 1 ¥ unidentified population of gamma- 1 0 - 26 1 c m 3 ray point sources, constraining ë s 1 ¥ 10 - 10 2 ¥ 10 - 10 5 ¥ 10 - 10 1 ¥ 10 - 9 2 ¥ 10 - 9 5 ¥ 10 - 9 dark matter in nearby sub-halos � F g H cm - 2 s - 1 L Berlin ¡& ¡ ¡Hooper ¡2013 ¡ 5 � Scott Dodelson � 7/30/14 �

  6. Dark Matter � Another Possible Handle on Sub-Halos ¡ • Can infer local DM density by studying the distribution of stars (Oort 1932!) � • Found kink in this program: large asymmetry between North & South à local density disturbed by ? � • Might open up ways of searching for passing DM sub-halos � Widrow, ¡Gardner, ¡Yanny, ¡Dodelson, ¡& ¡Chen ¡2012 ¡ 6 � Scott Dodelson � 7/30/14 �

  7. Dark Matter � Searches With Gamma Rays ¡ Fermi is transforming indirect detection, and we have used this data set to perform many state-of- the-art dark matter searches, including: � � Used statistical tools to extract constraints on spherically symmetric signal (DM) in the presence of foregrounds in annuli surrounding Galactic Center � Baxter ¡& ¡Dodelson ¡2011 ¡ Accounts ¡for ¡uncertainty ¡ in ¡DM ¡density ¡ 7 � Scott Dodelson � 7/30/14 �

  8. Dark Matter � Searches With Gamma Rays ¡ Fermi is transforming indirect detection, and we have used this data set to perform many state-of- the-art dark matter searches, including: � � The Galactic Center continues to be a powerful probe of dark matter; strong limits can be made, even without sophisticated modeling of backgrounds � Hooper, ¡Kelso, ¡Queiroz, ¡2012 ¡ 8 � Scott Dodelson � 7/30/14 �

  9. Excess ¡at ¡1-­‑3 ¡GeV, ¡well ¡fit ¡ Dark Matter � by ¡~30 ¡GeV ¡DM ¡parAcles ¡ Galactic Center Excess ¡ Originally discovered by Hooper and Goodenough (2009, 2011) measurements Daylan, ¡Finkbeiner, ¡Hooper, ¡ of the gamma-ray excess et ¡al. ¡2014 ¡ from the inner Milky Way have recently become much more robust and highly statistically significant � SpaAally ¡extended ¡(>10 ¡ degrees, ¡slightly ¡steeper ¡ than ¡NFW ¡ Spherically ¡symmetric ¡ 9 � Scott Dodelson � 7/30/14 �

  10. Dark Matter � Galactic Center Excess ¡ If interpreted as annihilating dark matter, the normalization of the signal implies a cross section of σ v ~ 2x10 -26 cm 3 /s, strongly indicative of a thermal relic � Broadly speaking, two directions for model Berlin, ¡Hooper, ¡McDermo; ¡2014 ¡ Agrawal, ¡Batell, ¡Hooper, ¡Lin ¡2014 ¡ building present themselves: � • NMSSM, m c = 67 GeV, tan b = 5 Annihilations directly to quarks through a 90 new mediator with either pseudoscalar or 80 axial interactions, or through a t-channel 70 * sbottom-like particle � 60 m a s @ GeV D • 50 Annihilations to other states in the dark 40 sector , which produce the observed gamma 30 rays in their decays (see also, Abdullah et al , 20 arXiv:1404.6528) � 20 40 60 80 100 m h s @ GeV D Berlin, ¡GraNa, ¡Hooper, ¡McDermo; ¡2014 ¡ 10 � Scott Dodelson � 7/30/14 �

  11. Dark Matter � Complex Dark Sector ¡ • Heavy particles in dark sector RaAo ¡of ¡Unstable ¡heavy ¡DM ¡to ¡ordinary ¡DM ¡ can decay to ordinary DM, producing positrons � • Produced late enough, the positrons cool down and are accreted into our Galaxy, wherein they annihilate producing 511 keV lines � • Viable allowed region might help explain INTEGRAL observations � Boubekeur, ¡Dodelson, ¡and ¡Vives ¡2012 ¡ 11 � Scott Dodelson � 7/30/14 �

  12. Dark Matter � The Case against Modified Gravity ¡ Claim of evidence for MOND arises from improper interpretation of observations. � Total ¡gas ¡ Gnedin ¡2012 ¡ Neutral ¡(= ¡observable) ¡ gas ¡ “MOND ¡line” ¡ 12 � Scott Dodelson � 7/30/14 �

  13. Dark Matter � The Case against Modified Gravity ¡ Earlier work (Dodelson & Liguori 2006) showed that TeVeS raised the amplitude of the perturbations, but the shape is still all wrong: generic problem for MG models � Dodelson ¡2011 ¡ 13 � Scott Dodelson � 7/30/14 �

  14. Neutrinos � AcceleraAon ¡Mechanism ¡for ¡High ¡Energy ¡Neutrinos ¡ • IceCube has recently reported the detection of a diffuse flux of extraterrestrial ~50 TeV-2 PeV neutrinos � • Candidate source classes include active galactic nuclei, low-luminosity gamma- e ray bursts, and starburst galaxies (Cholis and Hooper 2013 and Anchordoqui et al. 2014) � • Cosmic neutrinos with PeV-EeV energies provide an opportunity to observe interactions in accessible at the LHC, and over wildly longer baselines than otherwise possible � 14 � Presenter | Presentation Title � 7/23/14 �

  15. Neutrinos � AcceleraAon ¡Mechanism ¡for ¡High ¡Energy ¡Neutrinos ¡ • Nanoshots : little known and Crab ¡Nebula, ¡2.5 ¡kpc ¡away ¡ poorly understood phenomena. � • Duration points to small sources (<1m); amplitude e points to large E field � • S t e b b i n s & Yo o s h o w nanoshots consistent w/ Schwinger sparks: bursts of vacuum e ± pair production. Rate goes as � 15 � Presenter | Presentation Title � 7/23/14 �

  16. Neutrinos � AcceleraAon ¡Mechanism ¡for ¡High ¡Energy ¡Neutrinos ¡ Crab ¡Nebula, ¡2.5 ¡kpc ¡away ¡ e Stebbins ¡& ¡Yoo ¡2014 ¡ Electrons and positrons separate, producing large electric field, acceleration to large energies (>10 5 TeV). These same high-energy e ± produce high-energy neutrinos that could be related to those detected by IceCube � 16 � Presenter | Presentation Title � 7/23/14 �

  17. Neutrinos � Fast ¡Radio ¡Bursts ¡as ¡Neutrino ¡Sources ¡ • Fast radio bursts could be neutron star coalescence events, which also produce 10-50 MeV neutrinos � • Flux is potentially much larger than background, especially if coincidence with radio telescopes is exploited � • Could extract constraints on Stebbins ¡2014 ¡ neutrino masses � 17 � Presenter | Presentation Title � 7/23/14 �

  18. Neutrinos � DES ¡Large-­‑scale ¡Structure ¡constrains ¡Neutrino ¡Mass ¡ ¡ DES+Planck ¡forecast ¡ • Constrain neutrino mass using galaxy angular clustering in redshift slices (neutrinos suppress small- eV ¡ scale clustering) � • DES+Planck forecasts, including dark energy � • Include galaxy bias models informed by N-body simulations: � – Black: unbiased � – Magenta: 7-parameter evolving b(z) � • Plan: apply to N-body simulations Zablocki ¡2014 ¡ ¡ and to early DES data and LSST (Frieman ¡student) ¡ forecasts � 18 � Presenter | Presentation Title � 7/23/14 �

  19. Neutrinos � InterpreAng ¡Cosmic ¡Constraints ¡ SPT: ¡Hou, ¡…,Dodelson, ¡… ¡2014 ¡ 19 � Scott Dodelson � 7/30/14 �

  20. Neutrinos � InterpreAng ¡Cosmic ¡Constraints ¡ Dodelson ¡& ¡Lykken ¡2014 ¡ 20 � Scott Dodelson � 7/30/14 �

  21. Inflation � FNAL Theoretical Astrophysics: 
 A Tradition of Finding Cosmic Probes of BSM Physics � 21 � Scott Dodelson � 7/30/14 �

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend