current status and plans of the gerda experiment
play

Current status and plans of the Gerda experiment R. Mingazheva for - PowerPoint PPT Presentation

Current status and plans of the Gerda experiment R. Mingazheva for the Gerda collaboration University of Zurich 23 Aug 2016 Rizalina Mingazheva Aug 23 rd , 2016 The Gerda experiment 1/12 Motivation for 0 searches. Double beta decay


  1. Current status and plans of the Gerda experiment R. Mingazheva for the Gerda collaboration University of Zurich 23 Aug 2016 Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 1/12

  2. Motivation for 0 νββ searches. Double beta decay u u A(Z, N) → A(Z+2, N) + 2e- + 2¯ ν d d u d e- W - second order weak SM process can be observed for even-even ¯ ν nuclei if β -decay is forbidden ¯ ν W - e- u d d d u u Odd-odd has been observed for 11 M(A, Z) nuclei Even-even β β + 76 Ge: β + β + ββ T 2 νββ 1 / 2 =(1.926 ± 0.095) · 10 21 yr Q ββ [Eur. Phys.J. C75 (2015), no.9, 416] Z-2 Z-1 Z Z+1 Z+2 Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 2/12

  3. Motivation for 0 νββ searches u u d d u d W - e- ¯ ν R ν L e- W - u d d d u u A(Z, N) → A(Z+2, N) + 2e- Hypothetical non-SM process, ∆L=2 ν = ν , m ν � = 0 ¯ e.g. light Majorana neutrino exchange Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 3/12

  4. Motivation for 0 νββ searches <m ββ > = | � 3 i =1 U 2 ei m i | Ca Zr Nd u u Te Se Cd d d u d Te 1 Mo W - Ge e- Xe ¯ ν R (eV) current bound 1 10 − Xe) ν L e- W - m IH 2 u 10 − d d d u u NH 3 10 − A(Z, N) → A(Z+2, N) + 2e- 3 4 2 1 10 10 10 10 − − − − 50 100 150 m (eV) A lightest Hypothetical non-SM It would shed light on... process, ∆L=2 ν = ν , m ν � = 0 ¯ absolute neutrino mass scale e.g. light Majorana neutrino neutrino nature e.g. Majorana exchange vs. Dirac Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 3/12

  5. How to claim a discovery? Signal/background 2 νββ N sig ≈ Mt · α · ǫ · ln (2) T 0 ν m iso 1 / 2 Events N bg ≈ BI · ∆ E · Mt 0 νββ We claim a discovery with 99.7% CL when: ∆ E N sig ≥ 3 σ bg , where σ bg ≈ � N bg Energy Q ββ � � Mt T 0 ν � 1 / 2 ∝ ǫ 76 Ge detectors � BI · ∆ E High intrinsic purity Background-free case: Q ββ = 2039 keV T 0 ν 1 / 2 ∝ ǫ · Mt Best energy resolution (3-4 keV at Q ββ ) Mt - exposure α - enrichment factor 86% enrichment of 76 Ge ǫ - detection efficiency BI - backgr. index Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 4/12

  6. How to claim a discovery? Signal/background 2 νββ N sig ≈ Mt · α · ǫ · ln (2) T 0 ν m iso We need large scale and background free experiments! 1 / 2 Events N bg ≈ BI · ∆ E · Mt 0 νββ We claim a discovery with 99.7% CL when: ∆ E N sig ≥ 3 σ bg , where σ bg ≈ � N bg Energy Q ββ � � Mt T 0 ν � 1 / 2 ∝ ǫ 76 Ge detectors � BI · ∆ E High intrinsic purity Background-free case: Q ββ = 2039 keV T 0 ν 1 / 2 ∝ ǫ · Mt Best energy resolution (3-4 keV at Q ββ ) Mt - exposure α - enrichment factor 86% enrichment of 76 Ge ǫ - detection efficiency BI - backgr. index Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 4/12

  7. GERmanium Detector Array ( Gerda ) LNGS underground laboratory: covered by 1400m rock reduced muon flux ( ≈ 1 · m − 2 h − 1 ) Background rejection Active veto: Water tank: ⊘ = 10 m LAr cryostat: ⊘ = 4 m Ultra-clean materials High-pure 76 Ge detectors Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 5/12

  8. 76 Ge detectors in Gerda Coaxial detectors (from HdM, IGEX) Enriched: 7 detectors, 15 kg total mass 7 strings Natural: 3 detectors, 7 kg total mass Coaxial BEGe Active Active volume volume A p + contact n + contact BEGe (Broad Energy Germanium) detectors (produced by Canberra) 30 detectors, 20 kg total mass higher energy resolution better background events discrimination Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 6/12

  9. Gerda stability control Weekly calibration using 228 Th source Monitoring of energy scale stability [G. Benato. Doctoral thesis] Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 7/12

  10. Gerda stability control U n d e r Z u t h r i e c Weekly calibration using 228 Th h r e g s r p o o u n p source s i b i l i t y o Monitoring of energy scale f t h e stability During the calibration each source is lowered to the required position During the physics data taking sources are kept [G. Benato. Doctoral thesis] shielded in the position above 76 Ge strings Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 7/12

  11. Gerda Phase I. Results Nov 2011 - May 2013 15 kg of 76 Ge Exposure: 21.6 kg · yr ROI: Q ββ ± 5keV Blind analysis N exp = 2.0 ± 0.3 N obs = 3 Profile LL: N 0 ν =0 [Phys. Rev. Lett. 111, 122503 (2013)] No 0 νββ observation BI: 1 · 10 − 2 cts/(keV · kg · yr) T 0 ν 1 / 2 > 2 . 1 · 10 25 yr - world best limit for 76 Ge Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 8/12

  12. Transition to Phase II Upgrades Increased mass of BEGe detectors Reduce close background sources: cleaner materials LAr veto to reject external background: 16 PMT SiPM and optics fiber read out Phase II goals Background < 10 − 3 cts/(keV · kg · yr) Exposure ≥ 100 kg · yr Sensitivity T 0 ν 1 / 2 > 10 26 yr Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 9/12

  13. Phase II. First unblinding BEGe Dec. 2015 - May 2016 exposure: 5.8 kg · yr in the Q ββ ± 25 keV: N bg exp =0.3 N obs =0 BI = 7 +11 − 5 · 10 − 4 Coaxial exposure: 5.0 kg · yr In the Q ββ ± 25 keV: N bg exp =0.8 N obs =2 BI = 35 +21 − 15 · 10 − 4 BI is shown in the units FWHM at Q ββ = 3 – 4 keV cts/(keV · kg · yr) Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 10/12

  14. Conclusion & outlook Achieved lowest ever background: BEGe: − 5 · 10 − 4 cts/(keV · kg · yr) 7 +11 Coax: − 15 · 10 − 4 cts/(keV · kg · yr) 35 +21 No evidence for 0 νββ found 1 / 2 > 5.2 · 10 25 yr (90% C.L.) T 0 ν | m ee | < [160, 260] meV (90% C.L.) Goal: total exposure of 100 kg · yr and sensitivity T 0 ν 1 / 2 > 10 26 yr [Talk at Neutrino 2016] Follow us: it will be published soon! Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 11/12

  15. Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 12/12

  16. BackUp: Neutrino Double Beta Decay Postulated in 1935 First observation in 1980s Can occure if single beta decay is forbidden due to spin-coupling, seen by the pairing term in the semi-empirical mass formula. ≈ (10 18 − − 10 24 ) yr T 2 νββ 1 / 2 Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 1/11

  17. Backup: Signal and background events topology Signal Localized energy deposition within ≈ 1mm in one detector (Single Side Events [SSE]) Background Multiple energy deposition in one detector (Multi Side Events, removed by Pulse Shape Discrimintaion [PSD]) Events with coincident energy deposition in the LAr (active veto) Surface events fast ( p + ) and slow ( n + ) rising signals (PSD) Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 2/11

  18. BackUp: Isotopes DBD Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 3/11

  19. BackUp: Other mechanism of the DBD Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 4/11

  20. BackUp: 3+1 scenario and 0 νββ decay Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 5/11

  21. BackUp: From 0 νββ to neutrino mass Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 6/11

  22. BackUp: NME M 0 ν = <f || O K || i> O K operator, which creates two protons and annihilate two neutrons. Depends on the distance between nucleons, and on their quantum numbers ISM : the interacting shell model QRPA : the quasiparticle random-phase approximation IBM-2 : the interacting boson model EDF : and the energy density functional method Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 7/11

  23. BackUp: LAr background suppression. Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 8/11

  24. BackUp: LAr background suppression. Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 9/11

  25. BackUp: muon flux Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 10/11

  26. BackUp: From mass eigenstates to effective majorana neutrino mass � � 3 � � � U 2 | m ββ | = ei m i , � � � � � � i =1 c jk ( s jk ) = cosθ jk (sin θ jk ). 13 m 2 e iα + s 2 13 m 3 e iβ � � = � � c 2 12 c 2 13 m 1 + s 2 12 c 2 | m ββ | = � �� c 2 12 c 2 13 m 1 + s 2 12 c 2 13 m 2 cos α + s 2 � = 13 m 3 cos β + � s 2 12 c 2 13 m 2 sin α + s 2 �� + i 13 m 3 sin β , � �� � 2 + c 2 12 c 2 13 m 1 + s 2 12 c 2 13 m 2 cos α + s 2 | m ββ | = 13 m 3 cos β � 2 � s 2 12 c 2 13 m 2 sin α + s 2 + 13 m 3 sin β . θ 12 and θ 13 , m 1 , m 2 and m 3 , the two Majorana phases α and β Rizalina Mingazheva — Aug 23 rd , 2016 The Gerda experiment 11/11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend