cs4495 6495
play

CS4495/6495 Introduction to Computer Vision 5A-L1 Photometry Slides - PowerPoint PPT Presentation

CS4495/6495 Introduction to Computer Vision 5A-L1 Photometry Slides by Yin Li Thanks to Srinivasa Narasimhan, Shree Nayar, David Kreigman, Marc Pollefeys Photometry: Measuring light Lighting Camera Physical Models Computer Scene Lights,


  1. CS4495/6495 Introduction to Computer Vision 5A-L1 Photometry Slides by Yin Li Thanks to Srinivasa Narasimhan, Shree Nayar, David Kreigman, Marc Pollefeys

  2. Photometry: Measuring light Lighting Camera Physical Models Computer Scene

  3. Lights, surfaces ,and shadows

  4. Reflections

  5. Refractions

  6. Interreflections

  7. Scattering

  8. Surface appearance sensor source normal surface element β€’ Image intensity = 𝑔( normal, surface reflectance, illumination ) β€’ Surface reflection depends on both the viewing and illumination directions

  9. Radiometry Radiance ( 𝑀 ): Energy carried by a ray π‘œ π‘’πœ• β€’ Power per unit area perpendicular πœ„ to direction of travel , per unit solid 𝑒𝐡 angle 𝑒𝐡cosπœ„ β€’ Units: Watts per square meter per steradian ( 𝑋𝑛 βˆ’2 𝑑𝑠 βˆ’1 )

  10. Radiometry Irradiance ( 𝐹 ): Energy arriving at a surface π‘œ π‘’πœ• β€’ Incident power in a given direction, per unit area πœ„ β€’ Units: 𝑋𝑛 βˆ’2 𝑒𝐡 𝑒𝐡cosπœ„

  11. Foreshortening: A simple observation β€œPerpendicular light” β€œForeshortened light”

  12. Radiometry Irradiance ( 𝐹 ): Energy arriving at a surface π‘œ π‘’πœ• β€’ Incident power in a given direction, per unit area πœ„ β€’ Units: 𝑋𝑛 βˆ’2 𝑒𝐡 𝑒𝐡cosπœ„ For a surface receiving radiance 𝑀(πœ„, πœ’) coming in from π‘’πœ• the corresponding irradiance is 𝐹 πœ„, πœ’ = 𝑀 πœ„, πœ’ cosπœ„ π‘’πœ•

  13. BRDF: Bidirectional Reflectance Distribution Function source sensor Z viewing πœ„ incident direction normal direction πœ„ 𝑠 , πœ’ 𝑠 πœ„ 𝑗 πœ„ 𝑠 πœ„ 𝑗 , πœ’ 𝑗 Y X surface πœ’ element Irradiance : Light per unit area incident on a surface Radiance : Light from the surface reflected in a given direction, within a given solid angle

  14. BRDF: Bidirectional Reflectance Distribution Function source sensor Z viewing πœ„ incident direction normal direction πœ„ 𝑠 , πœ’ 𝑠 πœ„ 𝑗 πœ„ 𝑠 πœ„ 𝑗 , πœ’ 𝑗 Y X surface πœ’ element 𝐹 𝑑𝑣𝑠𝑔𝑏𝑑𝑓 (πœ„ 𝑗 , πœ’ 𝑗 : Irradiance at surface from direction πœ„ 𝑗 , πœ’ 𝑗 𝑀 𝑑𝑣𝑠𝑔𝑏𝑑𝑓 (πœ„ 𝑠 , πœ’ 𝑠 : Radiance from surface in direction πœ„ 𝑠 , πœ’ 𝑠

  15. BRDF: Bidirectional Reflectance Distribution Function source sensor Z viewing πœ„ incident direction normal direction πœ„ 𝑠 , πœ’ 𝑠 πœ„ 𝑗 πœ„ 𝑠 πœ„ 𝑗 , πœ’ 𝑗 Y X surface πœ’ element 𝐹 𝑑𝑣𝑠𝑔𝑏𝑑𝑓 (πœ„ 𝑗 , πœ’ 𝑗 : Irradiance at surface from direction πœ„ 𝑗 , πœ’ 𝑗 𝑀 𝑑𝑣𝑠𝑔𝑏𝑑𝑓 (πœ„ 𝑠 , πœ’ 𝑠 : Radiance from surface in direction πœ„ 𝑠 , πœ’ 𝑠 𝑀 𝑑𝑣𝑠𝑔𝑏𝑑𝑓 (πœ„ 𝑠 ,πœ’ 𝑠 BRDF: 𝑔(πœ„ 𝑗 , πœ’ 𝑗 ; πœ„ 𝑠 , πœ’ 𝑠 ) = 𝐹 𝑑𝑣𝑠𝑔𝑏𝑑𝑓 (πœ„ 𝑗 ,πœ’ 𝑗

  16. Important properties of BRDFs source sensor Z viewing πœ„ incident direction normal direction πœ„ 𝑠 , πœ’ 𝑠 πœ„ 𝑗 πœ„ 𝑠 πœ„ 𝑗 , πœ’ 𝑗 Y X surface πœ’ element Helmholtz Reciprocity: 𝑔 πœ„ 𝑗 , πœ’ 𝑗 ; πœ„ 𝑠 , πœ’ 𝑠 = 𝑔 πœ„ 𝑠 , πœ’ 𝑠 ; πœ„ 𝑗 , πœ’ 𝑗

  17. Important properties of BRDFs source sensor Z viewing πœ„ incident direction normal direction πœ„ 𝑠 , πœ’ 𝑠 πœ„ 𝑗 πœ„ 𝑠 πœ„ 𝑗 , πœ’ 𝑗 Y X surface πœ’ element Rotational Symmetry (Isotropy): 𝑔 πœ„ 𝑗 , πœ’ 𝑗 ; πœ„ 𝑠 , πœ’ 𝑠 = 𝑔 πœ„ 𝑗 , πœ„ 𝑠 , πœ’ 𝑗 βˆ’ πœ’ 𝑠

  18. BRDF’s can be incredibly complicated…

  19. Reflection Models source incident Body (diffuse) Reflection: direction body β€’ Diffuse Reflection reflection β€’ Matte Appearance surface β€’ Non-Homogeneous medium β€’ Clay, paper, etc.

  20. Reflection Models Body (diffuse) Reflection: β€’ Diffuse Reflection β€’ Matte Appearance β€’ Non-Homogeneous medium β€’ Clay, paper, etc.

  21. Reflection Models incident surface source Surface Reflection: direction reflection β€’ Specular Reflection β€’ Glossy Appearance surface β€’ Highlights β€’ Dominant for Metals

  22. Reflection Models Surface Reflection: β€’ Specular Reflection β€’ Glossy Appearance β€’ Highlights β€’ Dominant for Metals

  23. Reflection Models surface source incident reflection direction Image Intensity = body Body Reflection + reflection Surface Reflection surface

  24. Diffuse Reflection and Lambertian BRDF β€’ Only body reflection, and no specular reflection β€’ Lamberts law – essentially a patch looks equally bright from every direction.

  25. Diffuse Reflection and Lambertian BRDF

  26. Diffuse Reflection and Lambertian BRDF source intensity 𝐽 sensor incident viewing normal π‘œ direction direction πœ„ 𝑗 πœ„ 𝑠 𝑑 𝑀 surface element β€’ Surface appears equally bright from all directions! (independent of 𝑀 )

  27. Diffuse Reflection and Lambertian BRDF source intensity 𝐽 sensor incident viewing normal π‘œ direction direction πœ„ 𝑗 πœ„ 𝑠 𝑑 𝑀 surface element β€’ Lambertian BRDF is simply a constant – the albedo : 𝑔(πœ„ 𝑗 , πœ’ 𝑗 ; πœ„ 𝑠 , πœ’ 𝑠 ) = 𝜍 𝑒

  28. Diffuse Reflection and Lambertian BRDF source intensity 𝐽 sensor incident viewing normal π‘œ direction direction πœ„ 𝑗 𝑑 𝑀 surface element β€’ Surface Radiance: 𝑀 = 𝜍 𝑒 𝐽 cos πœ„ 𝑗 = 𝜍 𝑒 𝐽 ( π‘œ β‹… 𝑑 ) source intensity

  29. Diffuse Reflection and Lambertian BRDF source intensity 𝐽 sensor incident viewing normal π‘œ direction direction πœ„ 𝑗 𝑑 𝑀 surface element β€’ Surface Radiance: 𝑀 = 𝜍 𝑒 𝐽 cos πœ„ 𝑗 = 𝜍 𝑒 𝐽 ( π‘œ β‹… 𝑑 ) source intensity

  30. Specular Reflection and Mirror BRDF How about a mirror? Reflection only at mirror angle

  31. Specular Reflection and Mirror BRDF specular/mirror source intensity 𝐽 direction 𝑛 πœ„ 𝑛 , πœ’ 𝑛 incident normal π‘œ viewing direction 𝑑 direction πœ„ 𝑗 πœ„ 𝑀 sensor πœ„ 𝑗 , πœ’ 𝑗 𝑀 πœ„ 𝑀 , πœ’ 𝑀 surface element β€’ All incident light reflected in a single direction (visible when 𝑀 = 𝑛 )

  32. Specular Reflection and Mirror BRDF specular/mirror source intensity 𝐽 direction 𝑛 πœ„ 𝑛 , πœ’ 𝑛 incident normal π‘œ viewing direction 𝑑 direction πœ„ 𝑗 πœ„ 𝑀 sensor πœ„ 𝑗 , πœ’ 𝑗 𝑀 πœ„ 𝑀 , πœ’ 𝑀 surface element β€’ Mirror BRDF is simply a double-delta function: 𝑔(πœ„ 𝑗 , 𝜚 𝑗 ; πœ„ 𝑀 , 𝜚 𝑀 ) = 𝜍 𝑑 πœ€(πœ„ 𝑗 βˆ’ πœ„ 𝑀 ) πœ€(𝜚 𝑗 + 𝜌 βˆ’ 𝜚 πœ‘ )

  33. Specular Reflection and Mirror BRDF specular/mirror source intensity 𝐽 direction 𝑛 πœ„ 𝑛 , πœ’ 𝑛 incident normal π‘œ viewing direction 𝑑 direction πœ„ 𝑗 πœ„ 𝑀 sensor πœ„ 𝑗 , πœ’ 𝑗 𝑀 πœ„ 𝑀 , πœ’ 𝑀 surface element β€’ Surface Radiance: 𝑀 = 𝐽 𝜍 𝑑 πœ€ πœ„ 𝑗 βˆ’ πœ„ 𝑀 πœ€ πœ’ 𝑗 + 𝜌 βˆ’ πœ’ 𝑀

  34. Specular Reflection and Mirror BRDF specular/mirror source intensity 𝐽 direction 𝑛 πœ„ 𝑛 , πœ’ 𝑛 incident normal π‘œ viewing direction 𝑑 direction πœ„ 𝑗 πœ„ 𝑀 sensor πœ„ 𝑗 , πœ’ 𝑗 𝑀 πœ„ 𝑀 , πœ’ 𝑀 surface element β€’ Surface Radiance: 𝑀 = 𝐽𝜍 𝑑 πœ€ 𝑛 βˆ’ 𝑀 or 𝐽 𝜍 𝑑 πœ€ π‘œ βˆ’ β„Ž ( β„Ž is the β€œhalf angle”)

  35. Specular Reflection and Glossy BRDF 𝑙 𝑀 = 𝐽 𝜍 𝑑 𝑛 β‹… 𝑀

  36. Specular reflection Moving the light source Changing the exponent

  37. Phong Reflection Model The BRDF of many surfaces can be approximated by: Lambertian + Specular Model source source normal Lambertian Specular Model

  38. Diffuse + Specular Reflection diffuse specular diffuse + specular

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend