cs156 the calculus of
play

CS156: The Calculus of F [ x 1 , . . . , x n ] or x 1 , . . . , x n - PowerPoint PPT Presentation

Decision Procedures for Quantifier-free Fragments For theory T with signature and axioms A , decide if CS156: The Calculus of F [ x 1 , . . . , x n ] or x 1 , . . . , x n . F [ x 1 , . . . , x n ] is T -satisfiable Computation


  1. Decision Procedures for Quantifier-free Fragments For theory T with signature Σ and axioms A , decide if CS156: The Calculus of F [ x 1 , . . . , x n ] or ∃ x 1 , . . . , x n . F [ x 1 , . . . , x n ] is T -satisfiable Computation � � Decide if Zohar Manna F [ x 1 , . . . , x n ] or ∀ x 1 , . . . , x n . F [ x 1 , . . . , x n ] is T -valid Winter 2008 where F is quantifier-free and free( F ) = { x 1 , . . . , x n } Note: no quantifier alternations Chapter 8: Quantifier-free Linear Arithmetic Page 1 of 125 Page 2 of 125 Conjunctive Quantifier-free Fragment Preliminary Concepts We consider only conjunctive quantifier-free Σ-formulae, i.e., Vector n -vector a ∈ Q n conjunctions of Σ-literals (Σ-atoms or negations of Σ-atoms). variable n -vector transpose     x 1 a 1 For given arbitrary quantifier-free Σ-formula F , convert it into  .   .  a T = � � x = . a = . · · ·     a 1 a n . . DNF Σ-formula     x n a n F 1 ∨ . . . ∨ F k where each F i conjunctive. Matrix m × n -matrix F is T -satisfiable iff at least one F i is T -satisfiable. A ∈ Q m × n transpose column   a 1 j .       . a 11 · · · a 1 n a 11 · · · a m 1  .     . ... . .   . ... . .    A T = . . . . A = a i 1 · · · a ij · · · a in  .   .           .  a m 1 · · · a mn a 1 n · · · a mn row .   .   a mj Page 3 of 125 Page 4 of 125

  2. Multiplication I Multiplication II matrix-matrix vector-vector       . . .   . . . b 1 . . . n        .  � a T b = [ a 1 · · · a n ] .        = a i b i · · · a ik · · · · · · b kj · · ·  = · · · p ij · · ·  .              . . . i =1 . . . b n . . . A B P matrix-vector      � n  where a 11 · · · a 1 n x 1 i =1 a 1 i x i    . .   .   .  ... . . . . b 1 j Ax =  =  . .   .   .  n      . � � �   � n . p ij = a i b j = a i 1 · · · a in  = a ik b kj a m 1 · · · a mn x n i =1 a mi x i  .   k =1 b nj Page 5 of 125 Page 6 of 125 Special Vectors and Matrices Vector Space - set S of vectors closed under addition and scaling of vectors. That is, 0 - vector (column) of 0s if v 1 , . . . , v k ∈ S then λ 1 v 1 + · · · + λ k v k ∈ S 1 - vector of 1s for λ 1 , . . . , λ n ∈ Q n � Thus 1 T x = x i Linear Equation i =1   F : Ax = b 1 0  ...  I =  identity matrix ( n × n )    m × n -matrix variable n -vector m -vector 0 1 represents the Σ Q -formula Thus IA = AI = A , for n × n matrix A . F : ( a 11 x 1 + · · · + a 1 n x n = b 1 ) ∧ · · · ∧ ( a m 1 x 1 + · · · + a mn x n = b m )   0  .  .  .  Gaussian Elimination     Find x s.t. Ax = b by elementary row operations unit vector e i =  1  i th (Note: matrix indices start at 1)   ◮ Swap two rows .   .  .  ◮ Multiply a row by a nonzero scalar   ◮ Add one row to another 0 Page 7 of 125 Page 8 of 125

  3. Example 4 I Example 4 II 1. Add − 2 a 1 + 4 a 2 to a 3 Solve       3 1 2 x 1 6   3 1 2 6       1 0 1 x 2  = 1       1 0 1 1    2 2 1 x 3 2 0 0 1 − 6 Construct the augmented matrix 2. Add − a 1 + 2 a 2 to a 2   3 1 2 6   3 1 2 6   1 0 1 1    0 − 1 1 − 3  2 2 1 2   0 0 1 − 6 Apply the row operations as follows: This augmented matrix is in triangular form. Page 9 of 125 Page 10 of 125 Example 4 III Inverse Matrix Solving A − 1 is the inverse matrix of square matrix A if AA − 1 = A − 1 A = I x 3 = − 6 Square matrix A is nonsingular (invertible) if its inverse A − 1 exists. − x 2 + x 3 = − 3 ⇒ x 2 = − 3 3 x 1 + x 2 + 2 x 3 = 6 ⇒ x 1 = 7 How to compute A − 1 of A ? � � T [ I | A − 1 ] The solution is x = 7 − 3 − 6 [ A | I ] elementary row operations How to compute k th column of A − 1 ? Solve Ay = e k , i.e.  0  . . solve triangular matrix   .     A 1 y = . . .    .  solve using . ( k th column of A − 1 )  .  elementary 0 row operations Page 11 of 125 Page 12 of 125

  4. Linear Inequalities I Linear Inequalities II Convex Space Polyhedral Space An n -dimensional space S ⊆ R n is convex if for all pairs of points For m × n -matrix A , variable n -vector x , and m -vector ¯ b , the v 1 , ¯ ¯ v 2 ∈ S , Σ Q -formula λ ¯ v 1 + (1 − λ )¯ v 2 ∈ S for λ ∈ [0 , 1] . m � G : Ax ≤ ¯ b , i.e. , G : a i 1 x 1 + · · · + a in x n ≤ b i Ax ≤ ¯ v 1 ≤ ¯ b defines a convex space . For suppose A ¯ b and i =1 v 2 ≤ ¯ A ¯ b ; then also describes a subset (space) of Q n , called a polyhedron . v 2 ) ≤ ¯ A ( λ ¯ v 1 + (1 − λ )¯ b . Page 13 of 125 Page 14 of 125 Linear Inequalities III Example I Vertex Consider the linear inequality Consider m × n -matrix A where m ≥ n .     − 1 0 0 0 0 v is a vertex of Ax ≤ ¯ An n -vector ¯ b if there is     0 − 1 0 0 0       x ◮ a nonsingular n × n -submatrix A 0 of A and     0 0 − 1 0 0        y    ◮ corresponding n -subvector ¯ b 0 of ¯ b       0 0 0 − 1 ≤ 0       z 1       such that 1 1 0 0 3         v = ¯ z 2 A 0 ¯ b 0 .     1 0 − 1 0 2   � �� �   The rows a 0 i in A 0 and corresponding values b 0 i of ¯ x b 0 are the set 0 1 0 − 1 2 of defining constraints of the vertex ¯ v . � �� � � �� � A b Two vertices are adjacent if they have defining constraint sets A is a 7 × 4-matrix, b is a 7-vector, and that differ in only one constraint. x is a variable 4-vector representing the four variables { x , y , z 1 , z 2 } . Page 15 of 125 Page 16 of 125

  5. Example II Example III v = [2 1 0 0] T is a vertex of the constraints. For the nonsingular � � T , since Another vertex: v 0 = 0 0 0 0 submatrix A 0 (rows 3, 4, 5, 6 of A : defining constraints of v ),       − 1 0 0 0 0 0       0 0 − 1 0 2 0  0 − 1 0 0   0   0        =  0 0 0 − 1   1   0              0 0 − 1 0 0 0 =             1 1 0 0 0 3       0 0 0 − 1 0 0 1 0 − 1 0 0 2 � �� � � �� � � �� � A 0 v 0 b 0 � �� � � �� � � �� � A 0 v b 0 (rows 1,2,3,4 of A: defining constraints of v 0 ) Note: v and v 0 are not adjacent; they are different in 2 defining constraints. Page 17 of 125 Page 18 of 125 Linear Programming I Linear Programming II Solution: Optimization Problem Find vertex v ∗ satisfying Ax ≤ b and maximizing c T x . max c T x . . . objective function That is, Av ∗ ≤ b and subject to c T v ∗ is maximal: c T v ∗ ≥ c T u for all u satisfying Au ≤ b Ax ≤ b . . . constraints ◮ If Ax ≤ b is unsatisfiable, n then maximum is −∞ � Maximize c i x i ◮ It’s possible that the maximum is unbounded, i =1       then maximum is ∞ a 11 · · · a 1 n x 1 b 1  . ... .   .   .  . . .  ≤ . subject to       . . . .      a m 1 · · · a mn x n b m Page 19 of 125 Page 20 of 125

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend