cryptanalysis via algebraic spans
play

Cryptanalysis via Algebraic Spans Adi Ben-Zvi, Arkadius Kalka, and - PowerPoint PPT Presentation

Cryptanalysis via Algebraic Spans Adi Ben-Zvi, Arkadius Kalka, and Boaz Tsaban Bar-Ilan University Crypto 2018 PKC foundations are mainly abelian (and quantum insecure) PKC foundations are mainly abelian (and quantum insecure) DLP in finite


  1. Cryptanalysis via Algebraic Spans Adi Ben-Zvi, Arkadius Kalka, and Boaz Tsaban Bar-Ilan University Crypto 2018

  2. PKC foundations are mainly abelian (and quantum insecure)

  3. PKC foundations are mainly abelian (and quantum insecure) DLP in finite fields (1976); Factorization (RSA, 1978). Poor performance vs security tradeoff; no long-term security. Subexp algorithms for DLP in some elliptic curves. Quantum computers break them all.

  4. PKC foundations are mainly abelian (and quantum insecure) DLP in finite fields (1976); Factorization (RSA, 1978). Poor performance vs security tradeoff; no long-term security. Subexp algorithms for DLP in some elliptic curves. Quantum computers break them all. Options: (0) Abelian (DLP/RSA); (1) Lattices; (2) nonabelian groups/structures.

  5. PKC foundations are mainly abelian (and quantum insecure) DLP in finite fields (1976); Factorization (RSA, 1978). Poor performance vs security tradeoff; no long-term security. Subexp algorithms for DLP in some elliptic curves. Quantum computers break them all. Options: (0) Abelian (DLP/RSA); (1) Lattices; (2) nonabelian groups/structures. The nonablian option must be explored. In particular, we need general cryptanalytic tools for nonabelian crypto.

  6. PKC foundations are mainly abelian (and quantum insecure) DLP in finite fields (1976); Factorization (RSA, 1978). Poor performance vs security tradeoff; no long-term security. Subexp algorithms for DLP in some elliptic curves. Quantum computers break them all. Options: (0) Abelian (DLP/RSA); (1) Lattices; (2) nonabelian groups/structures. The nonablian option must be explored. In particular, we need general cryptanalytic tools for nonabelian crypto. Here: Algebraic Span Cryptanalysis.

  7. Conojugation in nonabelian groups

  8. Conojugation in nonabelian groups For a , c ∈ G (nonabelian group), a c := c − 1 ac (conjugation).

  9. Conojugation in nonabelian groups For a , c ∈ G (nonabelian group), a c := c − 1 ac (conjugation). Conjugation is an isomorphism: ( a − 1 ) c = ( a c ) − 1 ( ab ) c = a c · b c . For a word v ( x 1 , . . . , x k ) in the variables x 1 , . . . , x k (e.g., x 7 x − 1 3 x 5 ): v ( a c 1 , . . . , a c k ) = v ( a 1 , . . . , a k ) c .

  10. Commutator KE (Anshel–Anshel–Goldfeld 1999)

  11. � � Commutator KE (Anshel–Anshel–Goldfeld 1999) Alice Public Bob v ( x 1 , . . . , x k ) � a 1 , . . . , a k � ≤ G w ( x 1 , . . . , x k ) a = v ( a 1 , . . . , a k ) � b 1 , . . . , b k � ≤ G b = w ( b 1 , . . . , b k ) b 1 a , . . . , b ka a 1 b , . . . , a kb a − 1 v ( a b 1 , . . . , a b w ( b a 1 , . . . , b a k ) − 1 b k )

  12. � � Commutator KE (Anshel–Anshel–Goldfeld 1999) Alice Public Bob v ( x 1 , . . . , x k ) � a 1 , . . . , a k � ≤ G w ( x 1 , . . . , x k ) a = v ( a 1 , . . . , a k ) � b 1 , . . . , b k � ≤ G b = w ( b 1 , . . . , b k ) b 1 a , . . . , b ka a 1 b , . . . , a kb a − 1 v ( a b 1 , . . . , a b w ( b a 1 , . . . , b a k ) − 1 b k ) k ) = a − 1 a b = a − 1 b − 1 ab = ( b a ) − 1 b = w ( b a a − 1 v ( a b k ) − 1 b 1 , . . . , a b 1 , . . . , b a

  13. Linear equations from conjugations

  14. Linear equations from conjugations Assume G ≤ GL n ( F ) (matrix representations).

  15. Linear equations from conjugations Assume G ≤ GL n ( F ) (matrix representations). Given c = b a ( a , b ∈ G ): b a = a − 1 ba a · b a = ba Linear equations in the entries of the matrix a .

  16. Linear equations from conjugations Assume G ≤ GL n ( F ) (matrix representations). Given c = b a ( a , b ∈ G ): b a = a − 1 ba a · b a = ba Linear equations in the entries of the matrix a . A solution ˜ a is invertible w.h.p. (Schwartz–Zippel). a · b a = b ˜ ˜ a b a = ˜ a − 1 b ˜ a b a = b ˜ a

  17. Algebraic spans

  18. Algebraic spans G ≤ GL n ( F ) , a , b ∈ G . a with b a = b ˜ a by linear equations. Can find ˜

  19. Algebraic spans G ≤ GL n ( F ) , a , b ∈ G . a with b a = b ˜ a by linear equations. Can find ˜ a / ˜ ∈ G ! We can force a ∈ Alg ( G ) = span F ( G ) ⊆ M n ( F ) , ˜ the algebra generated by G (because that’s a vector space.)

  20. Algebraic spans G ≤ GL n ( F ) , a , b ∈ G . a with b a = b ˜ a by linear equations. Can find ˜ a / ˜ ∈ G ! We can force a ∈ Alg ( G ) = span F ( G ) ⊆ M n ( F ) , ˜ the algebra generated by G (because that’s a vector space.) For G = � g 1 , . . . , g k � ≤ GL n ( F ) , finding a basis for Alg ( G ) by repeated multiplication by generators and Gauss elimination is O ( kn 6 ) .

  21. Algebraic Span Cryptanalysis

  22. Algebraic Span Cryptanalysis G 1 , . . . , G k ≤ GL n ( F ) ; g 1 ∈ G 1 , . . . , g k ∈ G k . Given: linear equations on the entries of g 1 , . . . , g k . Need to find f ( g 1 , . . . , g k ) .

  23. Algebraic Span Cryptanalysis G 1 , . . . , G k ≤ GL n ( F ) ; g 1 ∈ G 1 , . . . , g k ∈ G k . Given: linear equations on the entries of g 1 , . . . , g k . Need to find f ( g 1 , . . . , g k ) . Instead of solving subject to g 1 ∈ G 1 , . . . , g k ∈ G k , (infeasible!) solve subject to the linear constraints g 1 ∈ Alg ( G 1 ) , . . . , g k ∈ Alg ( G k ) . Pray (or prove) that every solution ˜ g 1 , . . . , ˜ g k satisfies f (˜ g 1 , . . . , ˜ g k ) = f ( g 1 , . . . , g k ) .

  24. Application: Commutator KEP

  25. Application: Commutator KEP a ∈ � a 1 , . . . , a k � , b ∈ � b 1 , . . . , b k � ≤ G ≤ GL n ( F ) . Need: ( b 1 a , . . . , b ka , a 1 b , . . . , a kb ) �→ a − 1 b − 1 ab .

  26. Application: Commutator KEP a ∈ � a 1 , . . . , a k � , b ∈ � b 1 , . . . , b k � ≤ G ≤ GL n ( F ) . Need: ( b 1 a , . . . , b ka , a 1 b , . . . , a kb ) �→ a − 1 b − 1 ab . a ∈ Alg ( a 1 , . . . , a k ) , ˜ Solving linear equations, we obtain ˜ b ∈ Alg ( b 1 , . . . , b k ) with ˜ b 1 ˜ a b 1 a b a 1 b = a 1 = . . . . ; . . b k ˜ a b ka ˜ = a kb b a k = a = b a . a ˜ b = ˜ a b . Similarly, b ˜ Since ˜ a ∈ Alg ( a 1 , . . . , a k ) , ˜ b = ˜ a b = ˜ a ˜ a − 1 ˜ a ˜ b − 1 ˜ a − 1 ˜ a − 1 ˜ a − 1 b − 1 ˜ ab = ( b ˜ a ) − 1 b = ( b a ) − 1 b = a − 1 b − 1 ab ! ˜ b = ˜

  27. � � Triple Decomposition KE (Kurt 2005) Alice Public Bob A A 1 A 2 X 1 X 2 a , a 1 , a 2 , x 1 , x 2 | | | | ≤ G y 1 , y 2 , b 1 , b 2 , b Y 1 Y 2 B 1 B 2 B ax 1 , x − 1 1 a 1 x 2 , x − 1 2 a 2 b 1 y 1 , y − 1 1 b 2 y 2 , y − 1 2 b a b 1 y 1 a 1 y − 1 1 b 2 y 2 a 2 y − 1 = ax 1 b 1 x − 1 1 a 1 x 2 b 2 x − 1 2 b = ab 1 a 1 b 2 a 2 b 2 a 2 b � �� � K The triple products do not provide linear equations! (And without them we fail!)

  28. Cryptanalysis of Triple Dec KE Alg ( B 1 ) y 1 = Alg ( B 1 ) · b 1 y 1 − 1 Alg ( B 2 ∪ Y 2 ) y 1 = Alg ( B 2 ∪ Y 2 ) · y − 1 2 b − 1 2 y 1 = Alg ( B 2 ∪ Y 2 ) · y − 1 1 b 2 y 2 − 1 Alg ( A 2 ) x 2 = Alg ( A 2 ) · a − 1 2 x 2 = Alg ( A 2 ) · x − 1 2 a 2 Alg ( A 1 ∪ X 1 ) x 2 = Alg ( A 1 ∪ X 1 ) · x − 1 1 a 1 x 2 Pick invertible ˜ y 1 ∈ Alg ( Y 1 ) ∩ Alg ( B 1 ) y 1 ∩ Alg ( B 2 ∪ Y 2 ) y 1 ; ˜ x 2 ∈ Alg ( X 2 ) ∩ Alg ( A 2 ) x 2 ∩ Alg ( A 1 ∪ X 1 ) x 2 . y 1 − 1 · x − 1 x 2 − 1 · ˜ y 1 · y − 1 x 2 · x − 1 2 a 2 · y − 1 ax 1 · b 1 y 1 · ˜ 1 a 1 x 2 · ˜ 1 b 2 y 2 · ˜ 2 b Gives (intricate proof) ab 1 a 1 b 2 a 2 b = K ! (Alternatively, could check empirically.)

  29. Final comments

  30. Final comments Method also applies to: Nonabelian Diffie–Hellman (Ko–Lee–Cheon–Han–Kang–Park 2000), Centralizer KE (Shpilrain–Ushakov 2006), and some more.

  31. Final comments Method also applies to: Nonabelian Diffie–Hellman (Ko–Lee–Cheon–Han–Kang–Park 2000), Centralizer KE (Shpilrain–Ushakov 2006), and some more. Not the end of nonabelian cryptography: 1. Additional nonabelian proposals (Dehornoy et al., Kalka, . . . ). 2. Additional problems (CSP, Multiple CSP,. . . ) to build upon. 3. Groups with no small-dim representations. 4. The application of this method keeps getting harder as new systems emerge (cf. recent cryptanalysis of Algebraic Eraser).

  32. Final comments Method also applies to: Nonabelian Diffie–Hellman (Ko–Lee–Cheon–Han–Kang–Park 2000), Centralizer KE (Shpilrain–Ushakov 2006), and some more. Not the end of nonabelian cryptography: 1. Additional nonabelian proposals (Dehornoy et al., Kalka, . . . ). 2. Additional problems (CSP, Multiple CSP,. . . ) to build upon. 3. Groups with no small-dim representations. 4. The application of this method keeps getting harder as new systems emerge (cf. recent cryptanalysis of Algebraic Eraser). THANK YOU!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend