cross diffusion systems with entropy structure
play

Cross-diffusion systems with entropy structure Ansgar J ungel - PowerPoint PPT Presentation

Cross-diffusion systems with entropy structure Ansgar J ungel Vienna University of Technology, Austria asc.tuwien.ac.at/ juengel + oxygen separator graphite Introduction and examples 1 Al Li + Cu Analysis 2 Li +


  1. Cross-diffusion systems with entropy structure Ansgar J¨ ungel Vienna University of Technology, Austria asc.tuwien.ac.at/ ∼ juengel + oxygen separator graphite – Introduction and examples 1 Al Li + Cu Analysis 2 Li + Boundedness-by-entropy method 3 A nonstandard example 4 Ansgar J¨ ungel (TU Wien) Nonstandard entropies asc.tuwien.ac.at/ ∼ juengel 1 / 26

  2. Introduction and examples Multi-species systems Examples: Relative number of publications (in 0.01%): Wildlife populations Tumor growth Gas mixtures Lithium-ion batteries Population herding Nature is composed of multi-species systems + oxygen separator graphite – Al Li + Cu Li + Ansgar J¨ ungel (TU Wien) Nonstandard entropies asc.tuwien.ac.at/ ∼ juengel 2 / 26

  3. Introduction and examples Modeling of multi-species systems Particle models: Newton’s laws with interactions among species Markov chains: species move to neighboring cells Stochastic differential equations: using Brownian motion Kinetic equations: distribution function depends on age, size, etc. Here: Diffusive equations for population densities Reaction-diffusion systems: u i (0) = u 0 ∂ t u i − div( D i ∇ u i ) = f i ( u ) in Ω , t > 0 , i , no-flux b.c. Flux D i ∇ u i only depends on u i : Fick’s law not always valid! In multicomponent systems, flux may depend on ∇ u 1 , . . . , ∇ u n Cross-diffusion systems: u (0) = u 0 , ∂ t u − div( A ( u ) ∇ u ) = f ( u ) in Ω , t > 0 , no-flux b.c. Meaning: div( A ( u ) ∇ u ) i = � n j =1 div( A ij ( u ) ∇ u j ), A ∈ R n × n , u ∈ R n Cross-diffusion may allow for pattern formation Ansgar J¨ ungel (TU Wien) Nonstandard entropies asc.tuwien.ac.at/ ∼ juengel 3 / 26

  4. Introduction and examples Example ➊ : Cross-diffusion population dynamics u (0) = u 0 , ∂ t u − div( A ( u ) ∇ u ) = f ( u ) in Ω , t > 0 , no-flux b.c. u = ( u 1 , u 2 ) and u i models population density of i th species Diffusion matrix: ( a ij ≥ 0) � a 10 + a 11 u 1 + a 12 u 2 � a 12 u 1 A ( u ) = a 21 u 2 a 20 + a 21 u 1 + a 22 u 2 Suggested by Shigesada-Kawasaki- Teramoto 1979 to model segregation Derivation from on-lattice model Lotka-Volterra functions: f i ( u ) = ( b i 0 − b i 1 u 1 − b i 2 u 2 ) u i Diffusion matrix is not symmetric, generally not positive definite Figure: Minneapolis-Saint Paul percentage minority population 2010 Ansgar J¨ ungel (TU Wien) Nonstandard entropies asc.tuwien.ac.at/ ∼ juengel 4 / 26

  5. Introduction and examples Example ➋ : Multicomponent gas mixtures u (0) = u 0 , ∂ t u − div( A ( u ) ∇ u ) = f ( u ) in Ω , t > 0 , no-flux b.c. Volume fractions of gas components u 1 , . . . , u n , u n +1 = 1 − � n i =1 u i Diffusion matrix for n = 2: δ ( u ) = d 1 d 2 (1 − u 1 − u 2 ) + d 0 ( d 1 u 1 + d 2 u 2 ) � d 2 + ( d 0 − d 2 ) u 1 � 1 ( d 0 − d 1 ) u 1 A ( u ) = ( d 0 − d 2 ) u 2 d 1 + ( d 0 − d 1 ) u 2 δ ( u ) Application: Patients with airways obstruction inhale Heliox to speed up diffusion Proposed by Maxwell 1866/Stefan 1871 Duncan-Toor 1962: Fick’s law ( J i ∼ ∇ u i ) not sufficient, include cross-diffusion terms Boudin-Grec-Salvarani 2015: Derivation from Boltzmann equation for simple mixtures Ansgar J¨ ungel (TU Wien) Nonstandard entropies asc.tuwien.ac.at/ ∼ juengel 5 / 26

  6. Introduction and examples Difficulties and objectives u (0) = u 0 ∂ t u − div( A ( u ) ∇ u ) = f ( u ) in Ω , t > 0 , Main features: Diffusion matrix A ( u ) non-diagonal (cross-diffusion) Matrix A ( u ) may be neither symmetric nor positive definite Variables u i expected to be bounded from below and/or above Objectives: Local-in-time existence and uniqueness of classical solutions Global-in-time existence and uniqueness of weak solutions Positivity and boundedness of solution (if physically expected) Large-time behavior, design of stable numerical schemes Mathematical difficulties: No general theory for diffusion systems Generally no maximum principle, no regularity theory Lack of positive definiteness ⇒ local/global existence nontrivial Ansgar J¨ ungel (TU Wien) Nonstandard entropies asc.tuwien.ac.at/ ∼ juengel 6 / 26

  7. Introduction and examples Overview 1 Introduction and examples 2 Analysis 3 Boundedness-by-entropy method 4 A nonstandard example Ansgar J¨ ungel (TU Wien) Nonstandard entropies asc.tuwien.ac.at/ ∼ juengel 7 / 26

  8. Analysis Local existence analysis u (0) = u 0 ∂ t u − div( A ( u ) ∇ u ) = f ( u ) in Ω ⊂ R d , t > 0 , Theorem (Amann 1990) Let a ij , f i smooth, A ( u ) normally elliptic, u 0 ∈ W 1 , p (Ω; R n ) with p > d. Then ∃ unique local solution u 0 < T ∗ ≤ ∞ u ∈ C 0 ([0 , T ∗ ); W 1 , p (Ω)) , u ∈ C ∞ (Ω × [0 , T ∗ ); R n ) , A ( u ) normally elliptic = all eigenvalues have positive real parts Linear algebra: If H ( u ) symmetric positive definite such that H ( u ) A ( u ) positive definite then A ( u ) normally elliptic Application: Let h ( u ) convex and set H ( u ) := h ′′ ( u ). Then, if f = 0, � � � d h ′ ( u ) · ∂ t udx = − ∇ u : h ′′ ( u ) A ( u ) ∇ u h ( u ) dx = dx dt � �� � Ω Ω Ω ≥ 0 if h ′′ ( u ) A ( u ) pos. def. � Aim: find a Lyapunov functional (entropy) Ω h ( u ) dx Ansgar J¨ ungel (TU Wien) Nonstandard entropies asc.tuwien.ac.at/ ∼ juengel 8 / 26

  9. Analysis State of the art ∂ t u − div( A ( u ) ∇ u ) = f ( u ) in Ω ⊂ R d , t > 0 Global existence if . . . Growth conditions on nonlinearities (Ladyˇ zenskaya ... 1988) Control on W 1 , p (Ω) norm with p > d (Amann 1989) Positivity, mass control, diagonal A ( u ) (Pierre-Schmitt 1997) Unexpected behavior: Finite-time blow-up of H¨ older solutions (Star´ a-John 1995) Weak solutions may exist after L ∞ blow-up (Pierre 2003) Cross-diffusion may lead to pattern formation (instability) or may avoid finite-time blow-up (Hittmeir-A.J. 2011) Special structure needed for global existence theory: gradient-flow or entropy structure Ansgar J¨ ungel (TU Wien) Nonstandard entropies asc.tuwien.ac.at/ ∼ juengel 9 / 26

  10. Analysis Entropy and gradient flows Entropy: Measure of molecular disorder or energy dispersal Introduced by Clausius (1865) in thermodynamics Boltzmann, Gibbs, Maxwell: statistical interpretation Shannon (1948): concept of information entropy Entropy in mathematics: ∼ convex Lyapunov functional Hyperbolic conservation laws (Lax), kinetic theory (Lions) Relations to stochastic processes (Bakry, Emery) and optimal transportation (Carrillo, Otto, Villani) Gradient flow: ∂ t u = − grad H | u on differential manifold Example: R d with Euclidean structure ⇒ ∂ t u = − H ′ ( u ) H ( u ) is Lyapunov functional since ∂ t H ( u ) = −| H ′ ( u ) | 2 Gradient flow of entropy w.r.t. Wasserstein distance (Otto), entropy � u log udx : ∂ t u = div( u ∇ H ′ ( u )) = ∆ u H ( u ) = Ansgar J¨ ungel (TU Wien) Nonstandard entropies asc.tuwien.ac.at/ ∼ juengel 10 / 26

  11. Analysis Gradient flows: Cross-diffusion systems Main assumption ∂ t u − div( A ( u ) ∇ u ) = f ( u ) possesses formal gradient-flow structure � � ∂ t u − div B ∇ grad H ( u ) = f ( u ) , � where B is positive semi-definite, H ( u ) = Ω h ( u ) dx entropy Equivalent formulation: grad H ( u ) ≃ h ′ ( u ) =: w (entropy variable) B = A ( u ) h ′′ ( u ) − 1 ∂ t u − div( B ∇ w ) = f ( u ) , Consequences: 1 H is Lyapunov functional if f = 0: � � dH ∂ t u · h ′ ( u ) dt = dx = − ∇ w : B ∇ wdx ≤ 0 Ω � �� � Ω = w 2 L ∞ bounds for u : Let h ′ : D → R n ( D ⊂ R n ) be invertible ⇒ u = ( h ′ ) − 1 ( w ) ∈ D (no maximum principle needed!) Ansgar J¨ ungel (TU Wien) Nonstandard entropies asc.tuwien.ac.at/ ∼ juengel 11 / 26

  12. Analysis Example: Maxwell-Stefan systems for n = 2 Volume fractions of gas components u 1 , u 2 , u 3 = 1 − u 1 − u 2 u (0) = u 0 , ∂ t u − div( A ( u ) ∇ u ) = 0 in Ω , t > 0 , no-flux b.c. � d 2 + ( d 0 − d 2 ) u 1 � 1 ( d 0 − d 1 ) u 1 A ( u ) = δ ( u ) ( d 0 − d 2 ) u 2 d 1 + ( d 0 − d 1 ) u 2 � Entropy: H ( u ) = Ω h ( u ) dx , where h ( u ) = u 1 (log u 1 − 1) + u 2 (log u 2 − 1) + (1 − u 1 − u 2 )(log(1 − u 1 − u 2 ) − 1) Entropy variables: w = h ′ ( u ) ∈ R 2 or u = ( h ′ ) − 1 ( w ) e w i w i = ∂ h = log u i , u i = 1 + e w 1 + e w 2 ∈ (0 , 1) ∂ u i u 3 Entropy production: � 2 � � |∇ u i | 2 |∇ u 3 | 2 dH � dt ( u ) = − + d 0 u 1 u 2 dx ≤ 0 d i u i u 3 Ω i =1 Ansgar J¨ ungel (TU Wien) Nonstandard entropies asc.tuwien.ac.at/ ∼ juengel 12 / 26

  13. Analysis Overview 1 Introduction and examples 2 Analysis 3 Boundedness-by-entropy method 4 A nonstandard example Ansgar J¨ ungel (TU Wien) Nonstandard entropies asc.tuwien.ac.at/ ∼ juengel 13 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend