critical endpoints of the finite temperature qcd
play

Critical endpoints of the finite temperature QCD Yoshifumi Nakamura - PowerPoint PPT Presentation

Critical endpoints of the finite temperature QCD Yoshifumi Nakamura RIKEN Center for Computational Science in collaboration with Y. Kuramashi, H. Ohno & S. Takeda International Molecule-type Workshop Frontiers in Lattice QCD and related


  1. Critical endpoints of the finite temperature QCD Yoshifumi Nakamura RIKEN Center for Computational Science in collaboration with Y. Kuramashi, H. Ohno & S. Takeda International Molecule-type Workshop Frontiers in Lattice QCD and related topics April 15 - April 26 2019 Yukawa Institute for Theoretical Physics, Kyoto University 1 / 34

  2. Contents • introduction • Columbia plot • previous studies for critical endpoint • previous studies for critical endline • preliminary results • New N f = 3 simulations at N t = 12 • New N f = 2 + 1 simulations away from symmetric point • summary 2 / 34

  3. Columbia plot nature of finite temperature phase transition of 2+1 flavor QCD at µ = 0 in the plane of m u , d and m s • 1st order : small m q region [Pisarski, Wilczek, ’84] • 1st order : heavy m q region • crossover : medium m q • 2nd order ( Z 2 ) : boundary between 1st and crossover At small m q region • crossover at the physical point • critical end point at SU(3) flavor symmetric point, m sym , has not been determined yet • critical end line has not been well determined yet 3 / 34

  4. Previous studies for critical endpoint found N f S G S F N t endpoint ref y 3 S W 4 m PS > 1 GeV Iwasaki et al, ’96 y 3 S KS 4 m PS ∼ 290 MeV Karsch et al, ’01 y 3 I p4 4 m PS ∼ 190 MeV Karsch et al, ’01 m PS = 290 ( 20 ) MeV y 3 S KS 4 Karsch et al, ’04 y 3 I p4 4 m PS = 67 ( 17 ) MeV Karsch et al, ’04 y 3 S KS 4 am q ≈ 0 . 033 Karsch et al, ’04 am q = 0 . 0260 ( 5 ) y 3 S KS 4 de Forcrand et al, ’07 y 3 S KS 4 m PS / T = 1 . 680 ( 4 ) de Forcrand et al, ’07 y 3 S KS 6 m PS / T = 0954 ( 12 ) de Forcrand et al, ’07 m q / m phy ≤ 0 . 07 n 2+1 I stout KS 4 Endrodi et al, ’07 m q / m phy ≤ 0 . 12 n 2+1 I stout KS 6 Endrodi et al, ’07 n 3 I HISQ 6 m PS ≲ 50 MeV Bazavov et al, ’17 y 3 I imp. W 4,6,8 m PS ∼ 300 MeV our, ’14 y 3 I imp. W 8,10 m PS ≲ 170 MeV our, ’17 n 2+1 I HISQ 6,8(,12) m π ≤ 80 MeV Ding et al, ’18, ’19 Endrodi et al, ’07 : m l / m s = m phy / m phy s l Ding et al, ’18, ’19 : m s = m phy s 4 / 34

  5. Our study for critical endpoints • Iwasaki gauge + NP O(a) improved Wilson fermions • chiral condensate (10 - 20 noises for Tr D − 1 , − 2 . − 3 , − 4 ) • kurtosis intersection method to determine the critical endpoint • reweighting method to obtain more critical endpoints light heavy 0 x K t V>V>V 1st order K x E K crossover -2 • O(100) zero temperature runs for physical scale setting are covering almost critical endpoints and also transition points of finite temperature simulations 5 / 34

  6. N f = 3 simulation parameters • N t = 4 ( a ≈ 0 . 23 fm) , N l = 6 , 8 , 10 , 12 , 16 • β = 1 . 60 , κ = 0 . 1431 − 0 . 1439 • β = 1 . 65 , κ = 0 . 1410 − 0 . 1415 • β = 1 . 70 , κ = 0 . 1371 − 0 . 1390 • N t = 6 ( a ≈ 0 . 19 fm) , N l = 10 , 12 , 16 , 24 • β = 1 . 715 , κ = 0 . 140900 − 0 . 141100 • β = 1 . 73 , κ = 0 . 140420 − 0 . 140450 • β = 1 . 75 , κ = 0 . 139620 − 0 . 139700 • N t = 8 ( a ≈ 0 . 16 fm) , N l = 16 , 20 , 24 , 28 • β = 1 . 745 , κ = 0 . 140371 − 0 . 140393 • β = 1 . 74995 , κ = 0 . 140240 • β = 1 . 76 , κ = 0 . 139950 • N t = 10 ( a ≈ 0 . 13 fm), N l = 16 , 20 , 24 , 28 • β = 1 . 77 , κ = 0 . 139800 − 0 . 139900 • β = 1 . 78 , κ = 0 . 139550 − 0 . 139650 • β = 1 . 79 , κ = 0 . 139300 − 0 . 139400 6 / 34

  7. N f = 3 susceptibility and kurtosis (example 1) 450 N t =8, β =1.745 400 350 300 susceptibility 250 200 150 100 50 0 1.0 0.5 0.0 kurtosis -0.5 -1.0 N s =16 N s =20 -1.5 N s =24 N s =28 -2.0 0.14037 0.14038 0.14038 0.14039 0.14039 0.14040 0.14040 κ 7 / 34

  8. N f = 3 susceptibility and kurtosis (example 2) 90 N t =10, β =1.78 80 70 60 susceptibility 50 40 30 20 10 0 1.0 0.5 kurtosis 0.0 N s =16 -0.5 N s =20 N s =24 N s =28 -1.0 0.13956 0.13958 0.13960 0.13962 0.13964 0.13966 κ 8 / 34

  9. N f = 3 kurtosis intersection ( N t = 4 ) 0.0 N s =10 N t =4 N s =12 N s =16 CEP 3-dim Z 2 -0.5 kurtosis -1.0 -1.5 -2.0 1.59 1.60 1.61 1.62 1.63 1.64 1.65 1.66 β 9 / 34

  10. N f = 3 kurtosis intersection ( N t = 6 ) 0.0 N s =10 N t =6 N s =12 N s =16 N s =24 CEP -0.5 3-dim Z 2 kurtosis -1.0 -1.5 -2.0 1.71 1.72 1.73 1.74 1.75 1.76 β 10 / 34

  11. N f = 3 kurtosis intersection ( N t = 8 ) 0.0 N s =16 N t =8 N s =20 N s =24 N s =28 CEP -0.5 3-dim Z 2 kurtosis -1.0 -1.5 -2.0 1.740 1.745 1.750 1.755 1.760 1.765 1.770 β 11 / 34

  12. N f = 3 kurtosis intersection ( N t = 10 ) 0.0 N s =16 N t =10 N s =20 N s =24 N s =28 CEP -0.5 3-dim Z 2 kurtosis -1.0 -1.5 -2.0 1.75 1.76 1.77 1.78 1.79 1.80 1.81 β 12 / 34

  13. N f = 3 kurtosis intersection fitting [ ] K E + AN 1 /ν ( 1 + BN y t − y h K = ( β − β E ) ) l l χ 2 / dof N t Fit β E K E ν A B y t − y h 1 . 6115 ( 26 ) − 1 . 383 ( 48 ) 0 . 84 ( 13 ) 0 . 88 ( 42 ) 4 1 × × 1 . 75 1 . 61065 ( 61 ) 0 . 313 ( 12 ) 2 − 1 . 396 0 . 63 × × 3 . 05 1 . 6099 ( 17 ) 0 . 311 ( 14 ) 0 . 10 ( 21 ) 3 − 1 . 396 0 . 63 − 0 . 894 3 . 77 6 1 1 . 72518 ( 71 ) − 1 . 373 ( 17 ) 0 . 683 ( 54 ) 0 . 58 ( 17 ) 0 . 68 × × 2 1 . 72431 ( 24 ) − 1 . 396 0 . 63 0 . 418 ( 11 ) 0 . 70 × × 3 1 . 72462 ( 40 ) − 1 . 396 0 . 63 0 . 422 ( 12 ) − 0 . 052 ( 52 ) − 0 . 894 0 . 70 8 1 1 . 75049 ( 57 ) − 1 . 219 ( 25 ) 0 . 527 ( 55 ) 0 . 146 ( 88 ) 0 . 73 × × 2 1 . 74721 ( 42 ) − 1 . 396 0 . 63 0 . 404 ( 36 ) 5 . 99 × × 3 1 . 74953 ( 33 ) − 1 . 396 0 . 63 0 . 414 ( 13 ) − 1 . 33 ( 15 ) − 0 . 894 0 . 73 1 . 77796 ( 48 ) − 0 . 974 ( 25 ) 0 . 466 ( 45 ) 0 . 084 ( 52 ) 10 1 × × 0 . 22 1 . 7694 ( 16 ) 0 . 421 ( 95 ) 2 − 1 . 396 0 . 63 × × 10 . 03 1 . 77545 ( 53 ) 0 . 559 ( 29 ) − 2 . 97 ( 25 ) 3 − 1 . 396 0 . 63 − 0 . 894 0 . 43 Fit-1: no correction term ( B = y t − y h = 0 ) and all other parameters are used as fit parameter. Fit-2: no correction term and assuming the 3D Z 2 universality class for K E and ν . Fit-3: including correction term and assuming the 3D Z 2 universality class for K E , ν and y t − y h . 13 / 34

  14. N f = 3 , b = γ/ν of χ max ∝ N b l 3.0 2.5 2.0 1.5 b 1.0 N t =4 N t =6 0.5 N t =8 N t =10 3-dim Z 2 0.0 1.60 1.62 1.64 1.66 1.68 1.70 1.72 1.74 1.76 1.78 1.80 β critical endpoints determined by kurtosis intersection and critical exponent are consistent 14 / 34

  15. 𝑢 0.04 SU(3) symmetric point 1st order crossover 𝑢 𝑢 0 0.07 0.06 0.05 0.03 𝑢 0.02 0.01 0 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Critical endpoint ( m PS ) 󰠌𝑢 0 𝑛 PS, E fit: 𝑏 0 + 𝑏 1 ⁄𝑂 2 𝑢 + 𝑏 2 ⁄𝑂 3 solve: 𝑏 0 + 𝑏 1 ⁄𝑂 2 solve: 𝑏 0 + 𝑏 1 ⁄𝑂 2 𝑢 + 𝑏 2 ⁄𝑂 3 1⁄𝑂 2 Continuum extrapolation for √ t 0 m PS , E is still uncertain 15 / 34

  16. 0.02 0 0.07 0.06 0.05 0.04 0.03 0.09 0.01 0.17 𝑢 0.16 0.15 0.14 0.13 0.12 0.11 0.1 𝑢 Critical endpoint ( T ) 󰠌𝑢 0 𝑈 E fit: 𝑏 0 + 𝑏 1 ⁄𝑂 2 1⁄𝑂 2 16 / 34

  17. Critical endpoint In the continuum limit m PS , E ≲ 170 MeV T E = 134 ( 3 ) MeV m PS , E / T E ≲ 1 . 3 We shall extend our study at N t = 12 17 / 34

  18. Previous study for critical end line 0.35 [de Forcrand, Philipsen, ’07] Nf=2+1 0.3 physical point 0.25 tric - C m ud 2/5 m s 0.2 am s 0.15 0.1 0.05 0 0 0.01 0.02 0.03 0.04 am u,d • staggered fermions • N t = 4 , a ≈ 0 . 3 fm • data exhibits that slope at m sym is not - 2 ≈ 0 . 7 (roughly 5 times larger than m phy • am crit ) s s 18 / 34

  19. 0.35 (󰠌𝑢 0 𝑛 𝜌 ) 2 -2.0 -2.2 -2.4 0.45 0.40 slope 0.30 0.25 0.20 3rd degree poly. fit -1.6 2nd degree poly. fit endpoints (󰠌𝑢 0 𝑛 𝜃 𝑡 ) 2 0.45 0.40 0.35 0.30 0.25 0.20 -1.8 Our study for critical end line(1/2) around m sym • Wilson-clover fermion 𝑂 𝑔 = 3 • N t = 6 • a ≈ 0 . 19 fm • we confirmed that slope at m sym is - 2 19 / 34

  20. Our study for critical end line(2/2) We shall extend our study for critical end line away form m sym 20 / 34

  21. Preliminary results • New N f = 3 simulation at N t = 12 • New N f = 2 + 1 simulation away from symmetric point 21 / 34

  22. New N f = 3 simulation at N t = 12 • N t = 12 ( a ≈ 0 . 1 fm ? ), N l = 16 , 20 , 24 , 28 , 32 • β = 1 . 78 , κ = 0 . 1396 − 0 . 1397 • β = 1 . 79 , κ = 0 . 1393 − 0 . 1395 • β = 1 . 80 , κ = 0 . 1390 − 0 . 1394 • β = 1 . 81 , κ = 0 . 13895 − 0 . 13910 • β = 1 . 82 , κ = 0 . 13875 − 0 . 13895 • β = 1 . 83 , κ = 0 . 13855 − 0 . 13880 • β = 1 . 84 , κ = 0 . 13835 − 0 . 13870 • β = 1 . 85 , κ = 0 . 13815 − 0 . 13860 22 / 34

  23. N f = 3 susceptibility ( N t = 12 ) 120 β =1.80 N s =16 β =1.80 N s =20 β =1.80 N s =24 100 80 pbpz sus 60 40 20 0 0.1391 0.13915 0.1392 0.13925 0.1393 0.13935 κ 23 / 34

  24. N f = 3 kurtosis ( N t = 12 ) 2 Z 2 β =1.80 N s =16 β =1.80 N s =20 1.5 β =1.80 N s =24 1 0.5 pbpz krt 0 -0.5 -1 -1.5 -2 0.1391 0.13915 0.1392 0.13925 0.1393 0.13935 κ 24 / 34

  25. N f = 3 kurtosis intersection ( N t = 12 ) N t =12 (Fit 3) 0 N s =24 N s =28 N s =32 CEP 3-dim Z 2 -0.5 kurtosis -1 -1.5 -2 1.79 1.795 1.8 1.805 1.81 1.815 1.82 1.825 1.83 β 25 / 34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend