critical connectedness of thin arithmetical discrete
play

Critical connectedness of thin arithmetical discrete planes Timo - PowerPoint PPT Presentation

Critical connectedness of thin arithmetical discrete planes Timo Jolivet Universit Paris Diderot, France University of Turku, Finland Joint work with Valrie Berth , Damien Jamet , Xavier Provenal (Powered by ANR KIDICO) DGCI 2013 El


  1. Critical connectedness of thin arithmetical discrete planes Timo Jolivet Université Paris Diderot, France University of Turku, Finland Joint work with Valérie Berthé , Damien Jamet , Xavier Provençal (Powered by ANR KIDICO) DGCI 2013 El 22 de marzo de 2013 Universidad de Sevilla

  2. Discrete planes P v ,ω x ∈ R 3 such that � x , v � = 0 Plane: x ∈ Z 3 such that � x , v � ∈ [0 , ω [ Discrete plane: v = normal vector ω = thickness

  3. Discrete planes P v ,ω x ∈ R 3 such that � x , v � = 0 Plane: x ∈ Z 3 such that � x , v � ∈ [0 , ω [ Discrete plane: √ v = (1 , 2 , π ) ω = 4

  4. Discrete planes P v ,ω x ∈ R 3 such that � x , v � = 0 Plane: x ∈ Z 3 such that � x , v � ∈ [0 , ω [ Discrete plane: √ v = (1 , 2 , π ) ω = 0 . 2

  5. Discrete planes P v ,ω x ∈ R 3 such that � x , v � = 0 Plane: x ∈ Z 3 such that � x , v � ∈ [0 , ω [ Discrete plane: √ v = (1 , 2 , π ) ω = 0 . 5

  6. Discrete planes P v ,ω x ∈ R 3 such that � x , v � = 0 Plane: x ∈ Z 3 such that � x , v � ∈ [0 , ω [ Discrete plane: √ v = (1 , 2 , π ) ω = 1

  7. Discrete planes P v ,ω x ∈ R 3 such that � x , v � = 0 Plane: x ∈ Z 3 such that � x , v � ∈ [0 , ω [ Discrete plane: √ v = (1 , 2 , π ) ω = 1 . 5

  8. Discrete planes P v ,ω x ∈ R 3 such that � x , v � = 0 Plane: x ∈ Z 3 such that � x , v � ∈ [0 , ω [ Discrete plane: √ v = (1 , 2 , π ) ω = 2 . 5

  9. Discrete planes P v ,ω x ∈ R 3 such that � x , v � = 0 Plane: x ∈ Z 3 such that � x , v � ∈ [0 , ω [ Discrete plane: √ v = (1 , 2 , π ) ω = 4

  10. Discrete planes P v ,ω x ∈ R 3 such that � x , v � = 0 Plane: x ∈ Z 3 such that � x , v � ∈ [0 , ω [ Discrete plane: √ v = (1 , 2 , π ) ω = 6

  11. Discrete planes P v ,ω x ∈ R 3 such that � x , v � = 0 Plane: x ∈ Z 3 such that � x , v � ∈ [0 , ω [ Discrete plane: √ v = (1 , 2 , π ) ω = 10

  12. Critical thickness

  13. Critical thickness ω = max( v ) (no 2 D hole, “naive” plane)

  14. Critical thickness ω = max( v ) + max 2 ( v ) (no 1 D hole)

  15. Critical thickness ω = v 0 + v 1 + v 2 (no 0 D hole, “standard” plane)

  16. Critical thickness “Holes” critical behaviour [Andres-Acharya-Sibata 97]

  17. Critical thickness Today: we look at k -connectedness 0 -connected: 1 -connected: 2 -connected:

  18. Critical thickness ω = too small for 0 -connectedness

  19. Critical thickness ω = too small for 1 -connectedness

  20. Critical thickness ω = too small for 2 -connectedness

  21. Critical thickness ω = enough for 2 -connectedness

  22. Critical thickness Today: ω = Ω( v ) := inf { ω > 0 such that P v ,ω is 2 -connected }

  23. Critical thickness Today: ω = Ω( v ) := inf { ω > 0 such that P v ,ω is 2 -connected } ◮ max( v ) � Ω( v ) � v 0 + v 1 + v 2

  24. Critical thickness Today: ω = Ω( v ) := inf { ω > 0 such that P v ,ω is 2 -connected } ◮ max( v ) � Ω( v ) � v 0 + v 1 + v 2 P v , Ω( v ) − ε is not 2 -connected ◮ Obviously, ∀ ε > 0 , P v , Ω( v )+ ε is 2 -connected

  25. Critical thickness Today: ω = Ω( v ) := inf { ω > 0 such that P v ,ω is 2 -connected } ◮ max( v ) � Ω( v ) � v 0 + v 1 + v 2 P v , Ω( v ) − ε is not 2 -connected ◮ Obviously, ∀ ε > 0 , P v , Ω( v )+ ε is 2 -connected ◮ Is P v , Ω( v ) 2 -connected?

  26. Critical thickness Today: ω = Ω( v ) := inf { ω > 0 such that P v ,ω is 2 -connected } ◮ max( v ) � Ω( v ) � v 0 + v 1 + v 2 P v , Ω( v ) − ε is not 2 -connected ◮ Obviously, ∀ ε > 0 , P v , Ω( v )+ ε is 2 -connected ◮ Is P v , Ω( v ) 2 -connected? Theorem [Berthé-Jamet-J-Provençal] Yes and no.

  27. Critical thickness Today: ω = Ω( v ) := inf { ω > 0 such that P v ,ω is 2 -connected } ◮ max( v ) � Ω( v ) � v 0 + v 1 + v 2 P v , Ω( v ) − ε is not 2 -connected ◮ Obviously, ∀ ε > 0 , P v , Ω( v )+ ε is 2 -connected ◮ Is P v , Ω( v ) 2 -connected? Theorem [Berthé-Jamet-J-Provençal] Yes and no. We will be more specific.

  28. Computing Ω( v ) ◮ We assume v 0 � v 1 � v 2 ◮ Fully subtractive algo: FS ( v ) = sort ( v 0 , v 1 − v 0 , v 2 − v 0 )

  29. Computing Ω( v ) ◮ We assume v 0 � v 1 � v 2 ◮ Fully subtractive algo: FS ( v ) = sort ( v 0 , v 1 − v 0 , v 2 − v 0 ) ◮ Prop: Ω( v ) = Ω( FS ( v )) + v 0

  30. Computing Ω( v ) ◮ We assume v 0 � v 1 � v 2 ◮ Fully subtractive algo: FS ( v ) = sort ( v 0 , v 1 − v 0 , v 2 − v 0 ) ◮ Prop: Ω( v ) = Ω( FS ( v )) + v 0 Algorithm to compute Ω( v ) [Domenjoud-Jamet-Toutant] def critical_thickness(v): if v[0]+v[1] <= v[2]: return max(v) else: return v[0] + critical_thickness(FS(v))

  31. Computing Ω( v ) ◮ We assume v 0 � v 1 � v 2 ◮ Fully subtractive algo: FS ( v ) = sort ( v 0 , v 1 − v 0 , v 2 − v 0 ) ◮ Prop: Ω( v ) = Ω( FS ( v )) + v 0 Algorithm to compute Ω( v ) [Domenjoud-Jamet-Toutant] def critical_thickness(v): if v[0]+v[1] <= v[2]: return max(v) else: return v[0] + critical_thickness(FS(v)) ◮ (Here we assume v[0] is never 0 ( i.e. v 0 , v 1 , v 2 are lin. ind. over Q ), but the algorithm can be modified to handle this.)

  32. Computing Ω( v ) ◮ We assume v 0 � v 1 � v 2 ◮ Fully subtractive algo: FS ( v ) = sort ( v 0 , v 1 − v 0 , v 2 − v 0 ) ◮ Prop: Ω( v ) = Ω( FS ( v )) + v 0 Algorithm to compute Ω( v ) [Domenjoud-Jamet-Toutant] def critical_thickness(v): if v[0]+v[1] <= v[2]: return max(v) else: return v[0] + critical_thickness(FS(v)) ◮ (Here we assume v[0] is never 0 ( i.e. v 0 , v 1 , v 2 are lin. ind. over Q ), but the algorithm can be modified to handle this.) ◮ What if we never have v[0]+v[1] <= v[2] ?!?

  33. Computing Ω( v ) √ √ Example. v = (1 , 13 , 17)

  34. Computing Ω( v ) √ √ Example. v = (1 , 13 , 17) √ √ ◮ v (1) = (1 , 13 − 1 , 17 − 1)

  35. Computing Ω( v ) √ √ Example. v = (1 , 13 , 17) √ √ ◮ v (1) = (1 , 13 − 1 , 17 − 1) √ √ ◮ v (2) = (1 , 13 − 2 , 17 − 2)

  36. Computing Ω( v ) √ √ Example. v = (1 , 13 , 17) √ √ ◮ v (1) = (1 , 13 − 1 , 17 − 1) √ √ ◮ v (2) = (1 , 13 − 2 , 17 − 2) √ √ ◮ v (3) = ( 13 − 3 , 1 , 17 − 3)

  37. Computing Ω( v ) √ √ Example. v = (1 , 13 , 17) √ √ ◮ v (1) = (1 , 13 − 1 , 17 − 1) √ √ ◮ v (2) = (1 , 13 − 2 , 17 − 2) √ √ ◮ v (3) = ( 13 − 3 , 1 , 17 − 3) √ √ √ √ ◮ v (4) = ( − 13 + 4 , − 13 + 17 , 13 − 3)

  38. Computing Ω( v ) √ √ Example. v = (1 , 13 , 17) √ √ ◮ v (1) = (1 , 13 − 1 , 17 − 1) √ √ ◮ v (2) = (1 , 13 − 2 , 17 − 2) √ √ ◮ v (3) = ( 13 − 3 , 1 , 17 − 3) √ √ √ √ ◮ v (4) = ( − 13 + 4 , − 13 + 17 , 13 − 3) √ √ √ ◮ v (5) = ( 17 − 4 , 2 13 − 7 , − 13 + 4) : STOP

  39. Computing Ω( v ) √ √ Example. v = (1 , 13 , 17) √ √ ◮ v (1) = (1 , 13 − 1 , 17 − 1) √ √ ◮ v (2) = (1 , 13 − 2 , 17 − 2) √ √ ◮ v (3) = ( 13 − 3 , 1 , 17 − 3) √ √ √ √ ◮ v (4) = ( − 13 + 4 , − 13 + 17 , 13 − 3) √ √ √ ◮ v (5) = ( 17 − 4 , 2 13 − 7 , − 13 + 4) : STOP √ So ω = − 13 + 8

  40. Computing Ω( v ) √ Example. v = (1 , 3 10 , π )

  41. Computing Ω( v ) √ Example. v = (1 , 3 10 , π ) √ 1. (1 , 3 10 − 1 , π − 1) √ 2. ( 3 10 − 2 , 1 , π − 2) √ √ √ 3. ( 3 10 − 2 , − 3 3 10 + 3 , π − 10) √ √ √ 4. ( 3 10 − 2 , − 2 3 10 + 5 , π − 2 3 10 + 2) √ √ √ 5. ( 3 10 − 2 , − 3 3 10 + 7 , π − 3 3 10 + 4) √ √ √ 6. ( 3 10 − 2 , − 4 3 10 + 9 , π − 4 3 10 + 6) √ √ √ 7. ( 3 10 − 2 , − 5 3 10 + 11 , π − 5 3 10 + 8) √ √ √ 8. ( − 6 3 10 + 13 , 3 10 − 2 , π − 6 3 10 + 10) √ √ 9. ( − 6 3 10 + 13 , 7 3 10 − 15 , π − 3) √ √ √ 10. (13 3 10 − 28 , π + 6 3 10 − 16 , − 6 3 10 + 13) √ √ √ 11. (13 3 10 − 28 , π − 7 3 10 + 12 , − 19 3 10 + 41) √ √ √ 12. (13 3 10 − 28 , π − 20 3 10 + 40 , − 32 3 10 + 69) √ √ √ 13. (13 3 10 − 28 , π − 33 3 10 + 68 , − 45 3 10 + 97) √ √ √ 14. (13 3 10 − 28 , π − 46 3 10 + 96 , − 58 3 10 + 125) √ √ √ 15. (13 3 10 − 28 , π − 59 3 10 + 124 , − 71 3 10 + 153) √ √ √ 16. (13 3 10 − 28 , π − 72 3 10 + 152 , − 84 3 10 + 181) √ √ √ 17. (13 3 10 − 28 , π − 85 3 10 + 180 , − 97 3 10 + 209) √ √ √ 18. ( π − 98 3 10 + 208 , 13 3 10 − 28 , − 110 3 10 + 237) √ √ √ 19. ( − π + 111 3 10 − 236 , − π − 12 3 10 + 29 , π − 98 3 10 + 208) : STOP √ 3 So ω = 2 π − 98 10 + 208

  42. Computing Ω( v ) : an infinite loop ◮ If FS ( v ) = ( v 1 − v 0 , v 2 − v 0 , v 0 ) � − 1 1 0 � then FS ( v ) = M v where M = − 1 0 1 1 0 0

  43. Computing Ω( v ) : an infinite loop ◮ If FS ( v ) = ( v 1 − v 0 , v 2 − v 0 , v 0 ) � − 1 1 0 � then FS ( v ) = M v where M = − 1 0 1 1 0 0 ◮ Let v such that Mv = α v v = (1 , α + 1 , α 2 + α + 1) = (1 , 1 . 54 . . . , 1 . 84 . . . ) where α = 0 . 54 . . . is the real root of x 3 + x 2 + x − 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend