cracking the fungal armor studies on host defense
play

Cracking the Fungal Armor - Studies on Host Defense Mechanisms - PowerPoint PPT Presentation

Cracking the Fungal Armor - Studies on Host Defense Mechanisms agains A. fumigatus Tobias M. Hohl, MD, PhD Memorial Sloan-Kettering Cancer Center hohlt@mskcc org org hohlt@mskcc.org .org A. fumigatus Germination g Intact pulmonary Intact


  1. Cracking the Fungal Armor - Studies on Host Defense Mechanisms agains A. fumigatus Tobias M. Hohl, MD, PhD Memorial Sloan-Kettering Cancer Center hohlt@mskcc org org hohlt@mskcc.org .org

  2. A. fumigatus Germination g Intact pulmonary Intact pulmonary immune defense Conidial clearance Defective pulmonary Defective pulmonary immune defense Tissue-invasive hyphae

  3. Host Immune Defense Host Immune Defense against A. fumigatus • Recognition of inhaled spores by the innate immune system y • Modulation of inflammatory y responses by antifungal therapy • Monocytes and the initiation of CD4 T cell responses p

  4. Live Conidia induce Airway Neutrophil Live Conidia induce Airway Neutrophil Recruitment 42 Total Cells intratracheal Macrophages 36 Neutrophils Neutrophils 30 24 18 12 6 Vehicle Heat-killed Live Conidia Resting conidia Hohl, T.M. et al., PloS Pathog. 1:e30, 2005.

  5. Live Conidia induce TNF/ CXCL2 Secretion Live Conidia induce TNF/ CXCL2 Secretion by Alveolar Macrophages TNF CXCL2 60 24 45 18 ng/ml 30 12 15 6 Live HK Medium LPS Live HK Medium LPS Hohl, T.M. et al., PloS Pathog. 1:e30, 2005.

  6. Killed Germinating Conidia are highly Inflammatory g g y y Conidial Swelling Germ Tube Formation t = 0 3 h 5 h 7 h 9 TNF CXCL2 6 ng/ml 3 3 h 5 h 7 h Heat-killed Hohl, T.M. et al., PloS Pathog. 1:e30, 2005.

  7. Killed swollen Conidia induce Neutrophil Killed swollen Conidia induce Neutrophil Influx into the BAL fluid 30 Total Cells Macrophages Neutrophils 24 18 12 6 Live Heat-killed Heat killed Conidia swollen conidia Hohl, T.M. et al., PloS Pathog. 1:e30, 2005.

  8. Swollen Conidia and Germlings Swollen Conidia and Germlings expose β -glucan on their surface Anti β -glucan Anti β -glucan Isotype Control Ab Isotype Control Ab Hohl, T.M. et al., PloS Pathog. 1:e30, 2005.

  9. Dectin-1 binds and signals in response to β -(1,3) glucan β (1 3) i t l Brown, G. D., Nat Rev Immunol 6:33-43, 2006.

  10. Conidia Stimulate Dectin 1 and MyD88 Conidia Stimulate Dectin-1- and MyD88- dependent Pathways TNF CXCL2 3 3 2 2 /ml ng/ 1 1 anti-Dectin - + - + - + - + MyD88 -/- MyD88 -/- WT WT Hohl, T.M. et al., PloS Pathog. 1:e30, 2005.

  11. Host Immune Defense Host Immune Defense against A. fumigatus • Recognition of inhaled spores by the innate immune system y • Modulation of inflammatory y responses by antifungal therapy • Monocytes and the initiation of CD4 T cell responses p

  12. Modulation of Host Inflammatory Responses Modulation of Host Inflammatory Responses by Antifungal Therapy Echinocandins target fungal- β -D-glucan synthase • Echinocandins reduce A. fumigatus bulk β -glucan levels • (Kahn, J. et al., Antimicrob Agents Chemother 50:2214-2216, 2006) • E hi Echinocandins do not fully inhibit A. fumigatus growth, yet induce di d t f ll i hibit A f i t th t i d prominent morphologic changes at or above the MEC 1 x MEC Caspofungin (63 ng/ml) No Caspofungin

  13. Caspofungin Decreases Macrophage Inflammatory Responses to Conidia Responses to Conidia 1.8 ng/ml) 1.2 No Caspofungin No Caspofungin TNF (n * * * * 0.6 Caspo (ng/ml) 0 4 8 16 31 63 125250500 Caspofungin (500 ng/ml) BMM φ TNF/CXCL2 release (500 ng/ml caspofungin vs. no drug exposure): 0.49 ± 0.04* (range 0.46-0.54; n=4) • TNF 0.55 ± 0.10* (range 0.43-0.62; n=4) • CXCL2 Hohl, T.M. et al. J Infect Dis , 2008.

  14. Caspofungin Enhances Macrophage Inflammatory Caspofungin Enhances Macrophage Inflammatory Responses to Hyphae 10 8 * * * * * * * * g/ml) 8 ml) 6 TNF (ng/m CXCL2 (ng 6 4 4 2 2 C Caspo (ng/ml) 0 4 8 16 31 63 125 250 500 0 4 8 16 31 63 125 250 500 BMM φ TNF/CXCL2 release (500 ng/ml caspofungin vs. no drug exposure) 4.11 ± 2.39* (range 1.90-7.84; n=8) • TNF 2.90 ± 1.40* (range 1.53-5.41; n=8) • CXCL2 Hohl, T.M. et al. J Infect Dis , 2008.

  15. Caspofungin Modulates Dectin-1-dependent Inflammatory Responses to Conidia, Germlings, and Hyphae Responses to Conidia Germlings and Hyphae Conidia Germlings Hyphae 1.2 3.5 7 3 3 6 6 NF (ng/ml) 2.5 5 0.8 2 4 1.5 3 TN 0.4 0 4 1 1 2 2 0.5 1 Caspofungin - + - + - + Dectin-1-dependent TNF release Dectin-1-independent TNF release Hohl, T.M. et al. J Infect Dis , 2008.

  16. Effects of Echinocandin Drugs on β -glucan Exposure Effects of Echinocandin Drugs on β -glucan Exposure Caspofungin No Caspofungin anti- β -glucan anti- β -glucan DIC DIC A 8 h 10 h

  17. Effects of Echinocandin Drugs on β -glucan Exposure Caspofungin Caspofungin No Caspofungin No Caspofungin anti- β -glucan anti- β -glucan DIC DIC A 12 h 15 h 18 h Hohl, T.M. et al. J Infect Dis , 2008.

  18. Quantitative Analysis of β -glucan Immunoreactivity associated f β Q tit ti A l i l I ti it i t d with Caspofungin-treated and Untreated Hyphae Integrated Fluorescence Intensity/Fungal Mass (Arbitrary Units) Caspofungin-treated Untreated Hyphae Hyphae 21.4 ± 8.3* 1.83 ± 0.73 Expt. 1 43.7 ± 7.0* 2.96 ± 4.67 Expt. 2 Each value represents the average ratio ( ± SD) of β -glucan immunofluorescence intensity normalized to hyphal mass as calculated from 4-5 fields of view per condition. * p <0.02 compared to control condition (untreated hyphae). Hohl, T.M. et al. J Infect Dis , 2008.

  19. Echinocandin Drugs have an Immunopharmacologic Mechanism of Action

  20. Host Immune Defense Host Immune Defense against A. fumigatus • Recognition of inhaled spores by the innate immune system y • Modulation of inflammatory y responses by antifungal therapy • Monocytes and the initiation of CD4 T cell responses p

  21. Monocyte-derived Populations in Host Monocyte-derived Populations in Host Defense against A. fumigatus

  22. Development of an Experimental Development of an Experimental System to Track and Ablate Monocytes

  23. Recruitment of GFP + monocytes and myeloid DCs into the lungs of A. fumigatus- infected mice g g A. fumigatus 14.6 31.4 MDCs (2.7 M) Mo (5.2 M) 60.6 Uninfected 29.1 7.2 MDCs(0.4 M) D11c GFP CD G Mo (0 7 M) Mo (0.7 M) 48 48 Ly6G CD11b

  24. Cell Recruitment to mLN after intratracheal i f infection with A. fumigatus conidia ti ith A f i t idi Uninfected A. fumigatus 0.52 M 2.24 M 4.16 M 0.25 M 5 5 5 5 5 5 5 5 1.09 1 09 1 17 1.17 0.21 0 21 0 04 0.04 10 10 10 10 GFP 4 4 4 4 10 10 10 10 3 3 3 3 10 10 10 10 2 2 2 2 10 10 10 10 0 0 0 0 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 0 10 10 10 10 0 10 10 10 10 0 10 10 10 10 0 10 10 10 10 CD11b 50 GFP + cells Infected 0 3 cells) 40 Uninfected 30 (x 10 CD11b + 20 10

  25. Characterization of GFP + cells in the mLN 48 h 48 h post-infection with A. fumigatus t i f ti ith A f i t Mo 38 1.17 Mo R2 MDC 1.17 11b GFP P 49.7 49.7 CD MDC MDC CD11b CD11b CD11c CD11c Class II CD86 Ly6C

  26. CD11b + CD11c + GFP + cells transport CD11b CD11c GFP cells transport labelled conidia to mLN 25 10 5 150 2.5 0.4 20 10 4 2 51.8 100 100 15 15 P GFP # Cells # Cells # Cells 1.5 2.28 10 3 48.2 95.2 10 1 50 10 2 5 0.5 0 0 0 0 0 0 0 10 2 10 3 10 4 10 5 10 3 10 4 10 5 0 10 2 10 3 10 4 10 5 10 3 10 4 10 5 0 0 0 CD11b CD11c AF633-Conidia CD11c 25 10 5 200 1.4 20 20 10 4 150 47.8 GFP 15 # Cells # Cells 0.018 10 3 52.2 100 10 10 2 50 5 5 0 0 0 10 2 10 3 10 4 10 5 10 3 10 4 10 5 0 10 2 10 3 10 4 10 5 0 0 CD11b CD11c Conidia

  27. Depletion of CCR2-expressing cells Depletion of CCR2-expressing cells reduces conidial trafficking to the mLN

  28. Ablation of Lung DC subsets in CCR2 Depleter

  29. CCR2 Depleter mice cannot prime A. fumigatus -specific CD4 T cell responses f i t ifi CD4 T ll AF-specific CD4 T cells (Thy 1.1/1.2) CCR2 depleter or C57BL/6 (Thy 1.2) Infection via i.t. route -1 0 +1 +6 mLN CD4 Gate mLN CD4 Gate DT DT 0.12 0.12 0.15 0.15 10 5 10 0.09 0.09 10 4 10 CCR2 Depleter y 1.1 Cells Cells hy 1. 10 3 0.06 0.06 10 10 10 (DT t (DT-treated) t d) Th # # 10 2 0.03 0.03 10 0 0 10 2 10 3 10 4 10 5 10 3 10 4 10 5 0 0 1 10 10 10 0 0 1 10 10 Thy 1.2 Thy 1.2 CFSE CFSE 3.66 3.66 10 5 12 12 10 10 4 9 10 Non-Tg Control y 1.1 Cells Cells y 1. 10 3 6 6 10 10 10 (DT-treated) (DT t t d) Th Th # # 10 2 10 3 0 0 10 2 10 3 10 4 10 5 10 3 10 4 10 5 0 0 1 10 10 10 0 0 1 10 10 Thy 1.2 Thy 1.2 CFSE CFSE

  30. Summary • CCR2 reporter and depleter mice represent valuable tools to dissect the role of monocytes and monocyte derived cells in microbial defense and monocyte-derived cells in microbial defense • Monocyte-derived lung DCs (CD11b + ) transport conidia to draining lymph nodes g y p • Ablation results in loss of A. fumigatus -specific CD4 T cell priming • Monocytopenia may contribute to impaired A. M t i t ib t t i i d A fumigatus CD4 T cell responses in patients undergoing HSCT g g

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend