cp violation searches in atmospheric neutrinos
play

CP Violation Searches in Atmospheric Neutrinos Soeb Razzaque - PowerPoint PPT Presentation

Physics of Atmospheric Neutrinos (PANE) 2018 28 May - 1 June 2018, Trieste, Italy CP Violation Searches in Atmospheric Neutrinos Soeb Razzaque University of Johannesburg South Africa srazzaque@uj.ac.za S. Razzaque - 2 Discovery of


  1. Physics of Atmospheric Neutrinos (PANE) 2018 28 May - 1 June 2018, Trieste, Italy CP Violation Searches in Atmospheric Neutrinos Soeb Razzaque University of Johannesburg South Africa srazzaque@uj.ac.za

  2. S. Razzaque - 2 Discovery of Atmospheric Neutrinos South Africa Case Ins(tute of Technology - University of the Witwatersrand F. Reines et al. 1965 Gold mine in Johannesburg, South Africa 8800 mwe Liquid scin(llator detectors

  3. S. Razzaque - 3 Discovery of Atmospheric Neutrinos South Africa Case Ins(tute of Technology - University of the Witwatersrand F. Reines et al. 1965 Gold mine in Johannesburg, South Africa 8800 mwe Liquid scin(llator detectors

  4. S. Razzaque - 4 Current Status of CPV Search - NOvA Slide from Liudmila Kolupaeva at Nu HoRIzons 2018

  5. S. Razzaque - 5 Current Status of CPV Search - NOvA Slide from Liudmila Kolupaeva at Nu HoRIzons 2018

  6. S. Razzaque - 6 Current Status of CPV Search - T2K Slide from Zoya Vallari at Nu HoRIzons 2018

  7. S. Razzaque - 7 Current Status of CPV Search - SK Slide from Christophe Bronner at PANE 2018 Atmospheric neutrino results 18 χ 2 |Δm 2 sin 2 (θ 23 ) δ CP 32/31 | Normal hierarchy 571.33 2.5 x 10 -3 0.5875 4.18 Inverted hierarchy 575.66 2.5 x 10 -3 0.575 4.18 ➢ χ 2 (NH)-χ 2 (IH)=-4.33 ➢ P-value for this Δχ 2 (true values of the parameters corresponding to the NH best fit point) is 0.027 for true IH → Preference for the normal hierarchy hypothesis

  8. S. Razzaque - 8 CPV Search with Atmospheric Neutrinos ✦ Another (less expensive) way to search for CP violation and measure the CP phase ✦ Wider energy range and many baselines compared to accelerator experiments ✦ No significant degeneracy between CP and theta23 ✦ Available and well-understood technology ✦ PINGU, ORCA —> Super-PINGU, Super-ORCA ✦ Outline of this talk ✦ Estimates of sensitivity (Assuming normal hierarchy, known osc. param.) ✦ Identify CP sensitive energy and zenith angle ranges ✦ Current challenges and future improvements ✦ Flux, cross-section, particle identification, oscillation parameters, systematics See next talk: Super ORCA by Jannik Hofestaedt

  9. S. Razzaque - 9 Oscillation Probabilities - CP part Quasi-constant density approximations above 1-2 resonance and averaged over 1-3 oscillation CP asymmetry Akhmedov, Dighe, Lipari and Smirnov 1999 Akhmedov, Maltoni and Smirnov 2008 Akhmedov, S.R. and Smirnov 2013 S.R. and Smirnov 2015

  10. S. Razzaque - 10 CP Sensitive Energy Range Systematic shift of probability with CP phase in ~0.3-2 GeV range, below 1-3 resonances, over a wide zenith angle range - mantle PREM Core Parametric 1-2 1-3 Mantle 1-2 MSW 1-3 S.R., Smirnov 2015

  11. S. Razzaque - 11 CP Sensitive Energy Range Systematic shift of probability with CP phase in ~0.3-2 GeV range, below 1-3 resonances, over a wide zenith angle range - mantle PREM Core Mantle No shift of oscillation phase S.R., Smirnov 2015

  12. S. Razzaque - 12 CP Sensitive Energy Range Systematic shift of probability with CP phase in ~0.3-2 GeV range, below 1-3 resonances, over a wide zenith angle range - mantle PREM cos θ z = − 1.0 δ CP = 0 0.6 δ CP = π / 2 δ CP = π Core 0.4 P e µ δ CP = 3 π / 2 0.2 0 cos θ z = − 0.8 0.6 P e µ 0.4 0.2 Mantle 0 cos θ z = − 0.4 0.6 P e µ 0.4 0.2 0 0 0.5 1 1.5 2 2 4 6 8 10 E ν (GeV) E ν (GeV) S.R., Smirnov 2015

  13. S. Razzaque - 13 CP Sensitive Energy Range Systematic shift of probability with CP phase in ~0.3-2 GeV range, below 1-3 resonances, over a wide zenith angle range - mantle PREM 1 0.8 0.6 Core P µµ 0.4 0.2 cos θ z = − 1.0 0 0.8 0.6 P µµ 0.4 0.2 cos θ z = − 0.8 Mantle 1 δ CP = 0 0.8 δ CP = π / 2 0.6 δ CP = π P µµ δ CP = 3 π / 2 0.4 No shift of oscillation 0.2 cos θ z = − 0.4 phase 0 0 0.5 1 1.5 2 2 4 6 8 10 E ν (GeV) E ν (GeV) S.R., Smirnov 2015

  14. S. Razzaque - 14 Huge Ice/Water Cherenkov Detectors ANTARES IceCube • Denser array • Low energy KM3NeT- PINGU threshold ORCA ~ 1-3 GeV Oscillation Research with Cosmics in the Abyss

  15. S. Razzaque - 15 PINGU and ORCA Proposals Aartsen et al. 2017 Adrian-Martinez et al. 2016 3.7 Mt Fiducial mass 115 Detection units 2070 optical modules 6 Mt Fiducial mass 1.5m DOM spacing 26 PINGU strings

  16. S. Razzaque - 16 PINGU and ORCA Proposals Aartsen et al. 2017 Adrian-Martinez et al. 2016 10 ] 3 n n KM3NeT Preliminary & CC Effective Volume [Mm e e 9 8 7 6 5 4 3 LoI-9m 2 new 1 3.7 Mt Fiducial mass 0 5 10 15 20 25 115 Detection units Neutrino Energy [GeV] 2070 optical modules Search for CP violation requires sizable 6 Mt Fiducial mass effective mass in the ~0.3-2 GeV range 1.5m DOM spacing 26 PINGU strings

  17. S. Razzaque - 17 Reaching sub-GeV Energies Figure: A. Karle / ORCA

  18. S. Razzaque - 18 Reaching sub-GeV Energies Requires ~10x denser detector than PINGU/ORCA Figure: A. Karle Super - PINGU / ORCA / ORCA

  19. S. Razzaque - 19 Super-PINGU / Super-ORCA Preliminary sensitivity studies Goals: Identification of the relevant CP signatures and uncertainties Estimation of rough significance Use some realistic detector characteristics: Energy-dependence of the e ff ective mass Angular and energy resolutions, systematic uncertainties 8 V12 V15 LoI 6 Ρ ice V eff @ Mton D H Ν Μ L 4 Parametrization 2 0 5 10 15 20 25 30 E Ν @ GeV D

  20. S. Razzaque - 20 Atmospheric Fluxes Honda, Athar, Kajita, Kasahara and Midorikawa 2015 Flavor ratios Averaged Flux from all directions Zenith dependence

  21. S. Razzaque - 21 Cross sections Ankowski et al. 2016 CC QE Formaggio and Zeller 2013 Total Abe et al. 2016 single pion

  22. S. Razzaque - 22 Distinguishability of the CP phase A metric to quickly estimate Distinguishability e ff ect of di ff erent CP values parameter 1 year of events 1 year of events S.R., Smirnov 2015

  23. S. Razzaque - 23 CP-asymmetric Domains Determined by the solar, atmospheric and interference magic lines 20 Probability is roughly independent of CP atmospheric along the magic lines 15 Solar E n H GeV L proportional to the 10 interference oscillation phases for corresponding mass- splitting-square 5 Using average density profile - 1.0 - 0.8 - 0.6 - 0.4 - 0.2 0.0 cos q z

  24. S. Razzaque - 24 Distinguishability in Muon Channels Presence of both and fluxes reduces CP asymmetry - Flavor suppression Presence of both and fluxes reduces CP asymmetry - Charge suppression 1 year of events 1 year of events S.R., Smirnov 2015

  25. S. Razzaque - 25 Distinguishability in Electron Channels Electron ( ) channel gives sharper distinguishability No flavor suppression: contribution from only, is independent of CP 1 year of events 1 year of events S.R., Smirnov 2015

  26. S. Razzaque - 26 Smeared with Energy and Angular Resolutions • Substantial reduction of CP distinguishability - merging of small regions • Systematic broadening of negative CP asymmetric region • Large zenith angle range of same sign distinguishability at low energies 1 year of events 1 year of events S.R., Smirnov 2015

  27. S. Razzaque - 27 Smeared with Energy and Angular Resolutions • Substantial reduction of CP distinguishability - merging of small regions • Systematic broadening of negative CP asymmetric region • Large zenith angle range of same sign distinguishability at low energies 1 year of events 1 year of events S.R., Smirnov 2015

  28. S. Razzaque - 28 Correlated systematic uncertainties • Flux times cross-section normalization: 10% • Flux tilt factor (spectral index): 0.1 • Muon to electron neutrino flux ratio: 5% Vary parameters from standard values and calculate Similar to method event distributions in the energy-angle (ij) bins of pull in chi^2 pull variables: standard values: Minimize with respect to the pull variables

  29. S. Razzaque - 29 Estimated Sensitivity to CP All correlated (4) and 2.5% additional uncorrelated uncertainties ✦ Systematics dominate ✦ Comparable sensitivity for muon and electron neutrino channels ✦ Flavor misidentification at 20% level can reduce the sensitivity by a factor ~ 2-3 4 year sensitivity - Super-PINGU/ORCA Assumed true CP = 0 Lower values are for 20% misidentification

  30. S. Razzaque - 30 Summary and Outlook ✦ The e ff ect of CP phase dominates below 1-3 resonance - A systematic shift of probabilities in the ~0.3-2.0 GeV range and in wide zenith angle range (mantle region) ✦ CP measurement requires lowering threshold to < 0.5-1 GeV range ✦ Averaging over fast 1-3 oscillation does not wash out signal ✦ Integration over zenith angle does not decrease CP sensitivity ✦ Water/ice Cherenkov detectors with few Mt volume and sub-GeV threshold can measure CP with competitive significance ✦ Crude, first estimates with Super-PINGU/ORCA ✦ Many improvements are expected to enhance sensitivity ✤ Atmospheric flux uncertainties - Direct measurement may improve ✤ Cross section uncertainties at < 3 GeV - Recent new activity in measurement ✤ Event reconstruction, flavor identification - Expect improvements with dedicated simulations

  31. Back up slides

  32. S. Razzaque - 32 Estimated Sensitivity to CP All correlated (4) and 2.5% additional uncorrelated uncertainties True CP = 0 True CP = pi True CP = 3pi/2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend