cosmology lecture 1 our universe at present main
play

Cosmology: Lecture #1 Our Universe at present: main ingredients - PowerPoint PPT Presentation

I N R Cosmology: Lecture #1 Our Universe at present: main ingredients and the expansion law Dmitry Gorbunov Institute for Nuclear Research of RAS, Moscow 21 st European School on High-Energy Physics, CERN-JINR, Par adf urd


  1. ИI ЯN ИR Cosmology: Lecture #1 Our Universe at present: main ingredients and the expansion law Dmitry Gorbunov Institute for Nuclear Research of RAS, Moscow 21 st European School on High-Energy Physics, CERN-JINR, Par´ adf¨ urd˝ o, Hungary, 06.06.2013 Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 1 / 42

  2. ИI ЯN ИR Standard Model: Success and Problems Gauge fields (interactions): γ , W ± , Z , g � u L � ν L � � Three generations of matter: L = , e R ; Q = , d R , u R e L d L Describes ◮ all experiments dealing with electroweak and strong interactions Does not describe ◮ Dark energy ( Ω Λ ) ◮ Neutrino oscillations ◮ Strong CP: ? (boundary ◮ Dark matter ( Ω DM ) terms, new topology, . . . ) ◮ Baryon asymmetry ( Ω B ) ◮ Gauge hierarchy: ? (No new scales!) ◮ Inflationary stage ◮ Quantum gravity Try to explain all above Planck-scale physics saves the day Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 2 / 42

  3. ИI Outline ЯN ИR Outline General facts and key observables 1 Evidences for Dark Matter in astrophysics and cosmology 2 Mystery of Dark Energy 3 Redshift and the Hubble law 4 Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 3 / 42

  4. ИI Outline ЯN ИR “Natural” units in particle physics h = c = k B = 1 ¯ measured in GeV: energy E , mass M , temperature T 1 K = 8 . 6 × 10 − 14 GeV m p = 0 . 938 GeV, measured in GeV − 1 : time t , length L 1 s = 1 . 5 × 10 24 GeV − 1 , 1 cm = 5 . 1 × 10 13 GeV − 1 Gravity (General Relativity): V ( r ) = − G m 1 m 2 [ G ] = M − 2 r M Pl = 1 . 2 × 10 19 GeV = 22 µ g 1 G ≡ M 2 Pl Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 4 / 42

  5. ИI Outline ЯN ИR “Natural” units in cosmology 1 Mpc = 3 . 1 × 10 24 cm 1 AU = 1 . 5 × 10 13 cm mean Earth-to-Sun distance 1 ly = 0 . 95 × 10 18 cm distance light travels in one year 1 yr = 3 . 16 × 10 7 s 1 pc = 3 . 3 ly = 3 . 1 × 10 18 cm distance to object which has a parallax angle of one arcsec 100 AU — Solar system size 1.3 pc — nearest-to-Sun stars 1 kpc — size of dwarf galaxies 50 kpc — distance to dwarves 0.8 Mpc — distance to Andromeda 1-3 Mpc — size of clusters 15 Mpc — distance to Virgo Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 5 / 42

  6. ИI General facts and key observables ЯN ИR Outline General facts and key observables 1 Evidences for Dark Matter in astrophysics and cosmology 2 Mystery of Dark Energy 3 Redshift and the Hubble law 4 Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 6 / 42

  7. ИI General facts and key observables ЯN ИR Universe is expanding L ∝ a ( t ) Doppler redshift of light n ∝ a − 3 ( t ) H ( t ) = ˙ a ( t ) a ( t ) Hubble parameter Hubble Law H ( t 0 ) r = v r Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 7 / 42

  8. ИI General facts and key observables ЯN ИR Expansion: redshift z λ abs . / λ em . ≡ 1 + z z ≪ 1 Hubble law : z = H 0 r km H 0 = h · 100 h = 0 . 705 ± 0 . 015 s · Mpc Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 8 / 42

  9. ИI General facts and key observables ЯN ИR Expansion: redshift z λ abs . / λ em . ≡ 1 + z z ≪ 1 Hubble law : z = H 0 r km H 0 = h · 100 h = 0 . 705 ± 0 . 015 s · Mpc standard candles Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 9 / 42

  10. ИI General facts and key observables ЯN ИR Universe is homogeneous and isotropic redshift h 1 h 0 h 2 h RA 23 z ≡ λ detector λ source − 1 3 h h 22 h 4 21 h -39 o o -42 -45 o 60 Dec 50 40 30 South cz (1000 km/s) 20 12434 galaxies ← 150 Mpc v r = c z 10 Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 10 / 42

  11. ИI General facts and key observables ЯN ИR The Universe: age & geometry & energy density [ H 0 ] = L − 1 = t − 1 ≈ 14 × 10 9 yr time scale: t H 0 = H − 1 age of our Universe 0 ≈ 4 . 3 × 10 3 Mpc spatial scale: l H 0 = H − 1 size of the visible Universe 0 t H 0 is in agreement with various observations homogeneity and isotropy in 3d : flat, spherical or hyperbolic Observations: “very” flat l H 0 / R curv < 0 . 1 GM U / l U ∼ G ρ 0 l 3 order-of-magnitude estimate: H 0 / l H 0 ∼ 1 flat Universe ρ c = 3 Pl ≈ 0 . 53 × 10 − 5 GeV 8 π H 2 0 M 2 → 5 protons in each 1 m 3 − cm 3 Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 11 / 42

  12. ИI General facts and key observables ЯN ИR Universe is occupied by “thermal” photons T 0 = 2 . 726 K the spectrum Wavelength (cm) 10 − 17 10 1.0 0.1 (shape and normalization!) 10 − 18 is thermal I ν (W m − 2 sr − 1 Hz − 1 ) 10 − 19 n γ = 411 cm − 3 2.726 K blackbody 10 − 20 FIRAS� COBE satellite� DMR� COBE satellite� UBC� sounding rocket� 10 − 21 LBL-Italy� White Mt. & South Pole� Princeton� ground & balloon� Cyanogen optical 10 − 22 1 10 100 1000 Frequency (GHz) Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 12 / 42

  13. ИI General facts and key observables ЯN ИR Conclusions from observations The Universe is homogeneous, isotropic, hot and expanding... Conclusions interval between events gets modified ∆ s 2 = c 2 ∆ t 2 − a 2 ( t )∆ x 2 1 h 0 h 2 h 23 h RA 3 h 22 h 4 h 21 h -39 o in GR expansion is described by the Friedmann equation -42 o -45 o 60 Dec 50 40 � ˙ � 2 30 a = H 2 ( t ) = 8 π South cz (1000 km/s) 3 G ρ energy 20 12434 galaxies 10 density a ρ energy density = ρ radiation + ρ matter + ... Wavelength (cm) 10 − 17 10 1.0 0.1 in the past the matter density was higher, our Universe was 10 − 18 I ν (W m − 2 sr − 1 Hz − 1 ) “hotter” filled with electromagnetic plasma 10 − 19 2.726 K blackbody 10 − 20 FIRAS� COBE satellite� DMR� COBE satellite� ρ matter ∝ 1 / a 3 ( t ) , ρ radiation ∝ 1 / a 4 ( t ) , ρ curvature ∝ 1 / a 2 ( t ) UBC� sounding rocket� 10 − 21 LBL-Italy� White Mt. & South Pole� Princeton� ground & balloon� Cyanogen optical 10 − 22 1 10 100 1000 Frequency (GHz) certainly known up to T ∼ 1MeV ∼ 10 10 K Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 13 / 42

  14. ИI General facts and key observables ЯN ИR Why do we need dark components (within GR)? Astrophysical data favor Dark Matter ◮ Observations in galaxies ◮ Observations in galaxy clusters Cosmological data favor Dark Matter and Dark Energy ◮ Observation of objects at cosmological distances (far=early) ◮ Baryonic Aciustic (Sakharov) Oscillations (BAO) in two-point galaxy correlation function ◮ Evolution of galaxy clasters in the Universe ◮ Anisotropy of Cosmic Microwave Background (CMB) Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 14 / 42

  15. ИI Evidences for Dark Matter in astrophysics and cosmology ЯN ИR Outline General facts and key observables 1 Evidences for Dark Matter in astrophysics and cosmology 2 Mystery of Dark Energy 3 Redshift and the Hubble law 4 Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 15 / 42

  16. ИI Evidences for Dark Matter in astrophysics and cosmology ЯN ИR Astrophysical and cosmological data are in agreement 2.0 � ˙ � 2 a = H 2 ( t ) = 8 π No Big Bang 3 G ρ energy density a ρ energy density = ρ radiation + ρ ordinary + ρ dark matter + ρ Λ matter 1.5 ρ radiation ∝ 1 / a 4 ( t ) ∝ T 4 ( t ) , ρ matter ∝ 1 / a 3 ( t ) ρ Λ = const 3 H 2 density ( t 0 ) ≡ ρ c ≈ 0 . 53 × 10 − 5 GeV 1.0 8 π G = ρ energy 0 cm 3 SNe Ω γ ≡ ρ γ ρ c = 0 . 5 × 10 − 4 radiation: Ω B ≡ ρ B Baryons (H, He): ρ c = 0 . 046 0.5 ∑ ρ ν i Neutrino: Ω ν ≡ < 0 . 01 ρ c CMB Flat Ω DM ≡ ρ DM BAO Dark matter: ρ c = 0 . 23 Ω Λ ≡ ρ Λ 0.0 Dark energy: ρ c = 0 . 73 0.0 0.5 1.0 Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 16 / 42

  17. ИI Evidences for Dark Matter in astrophysics and cosmology ЯN ИR Galactic dark halos: flat rotation curves � GM ( R ) v ( R ) = R � R 0 ρ ( r ) r 2 dr M ( R ) = 4 π observations: v ( R ) ≃ const √ visible matter: internal regions v ( R ) ∝ R √ external (“empty”) regions v ( R ) ∝ 1 / R Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 17 / 42

  18. ИI Evidences for Dark Matter in astrophysics and cosmology ЯN ИR Dark Matter in clusters X -rays from hot gas in clusters � R dP GM ( R ) 0 ρ ( r ) r 2 dr , dR = − µ n e ( R ) m p , M ( R ) = 4 π P ( R ) = n e ( R ) T e ( R ) R 2 galaxies in clusters virial theorem U + 2 E k = 0 r � = GM 2 3 M � υ 2 R Milky Way: Virgo infall Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 18 / 42

  19. ИI Evidences for Dark Matter in astrophysics and cosmology ЯN ИR Gravitational lensing in GR: α = 4 GM / ( c 2 b ) Einstein Cross η = D s � � � � � ξ − D ls � α ξ D l common lens with specific refraction coefficient ξ − � � ξ ′ source: quasar D s = 2 . 4 Gpc = 4 G � � � � � 2 d 2 ξ ′ � � ξ ′ , z � � α ξ ρ dz c � � � ξ − � ξ ′ � � lens: galaxy D l = 120 Mpc � Dmitry Gorbunov (INR) Lecture #1 , 6 June 2013 06.06.2013, ESHEP 19 / 42

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend