cosmological moduli dark matter and possible implications
play

Cosmological Moduli, Dark Matter, and Possible Implications for the - PowerPoint PPT Presentation

Cosmological Moduli, Dark Matter, and Possible Implications for the LHC Scott Watson Michigan Center for Theoretical Physics Based on work with: Berkeley: Piyush Kumar Columbia: Brian Greene, Simon Jude, Janna Levin, Amanda Weltman Davis:


  1. Cosmological Moduli, Dark Matter, and Possible Implications for the LHC Scott Watson Michigan Center for Theoretical Physics Based on work with: Berkeley: Piyush Kumar Columbia: Brian Greene, Simon Jude, Janna Levin, Amanda Weltman Davis: Nemanja Kaloper McGill: Robert Brandenberger Michigan: Sera Cremonini and Konstantin Bobkov, Gordon Kane, Jing Shao Trieste / CERN: Bobby Acharya

  2. Standard Model Landscape R 1 Higgs Moduli Space (VEVs) 246 GeV −∞ ∞ � h � ?

  3. Kaluza-Klein Landscape ← 2 R → � R ≡ G 55 → φ � x ) e iny/R ψ ( � x, y ) = ψ n ( � n R 1 Radion Moduli Space −∞ ∞ ? � φ �

  4. Field Theory Moduli Spaces Observations and Puzzles • (Uncountably) Infinite number of vacua • Small masses / weak couplings? • High level of symmetry (not just a bunch of U(1)’s)? • Cosmological Constant -- Anthropics needed? 10 − 3 eV � 4 � −∞ ∞ ? Λ

  5. Can knowledge of UV Completion address these issues? aka: String Theory

  6. String Moduli Spaces • Couplings and masses are derived quantities g 2 s G N = M 2 s V 6 V 1 / 6 g s ∼ e � φ � ∼ e � ψ � 6 α GUT = g 2 s V 6 G N = (6 . 674280 . 00067) × 10 − 11 m 3 kg − 1 s − 2 . • Observation --> Hope for finite moduli space OR an explanation Vafa Conjecture = always finite volume

  7. Standard Model Landscape R 1 Moduli Space (VEVs) ? −∞ ∞ � φ �

  8. String Standard Model Landscape R 1 Moduli Space (VEVs) ? Finite Finite −∞ ∞ � φ �

  9. String Standard Model Landscape R 1 Moduli Space (VEVs) ? Finite Finite −∞ ∞ � φ � Turn on Flux � Discretum F p = Z X

  10. String Standard Model Landscape R 1 Moduli Space (VEVs) ? Finite Finite −∞ ∞ � φ � Turn on Flux � Discretum F p = Z X Dualities 1 � φ � ↔ � φ �

  11. String Standard Model Landscape R 1 Moduli Space (VEVs) ? Finite Finite −∞ ∞ � φ � Turn on Flux � Discretum F p = Z X Dualities 1 � φ � ↔ � φ � Points of Enhanced Symmetry

  12. String Theory on a Circle � R ≡ G 55 → φ ← 2 R → A R/L = G µ 5 ± B µ 5 µ

  13. String Theory on a Circle � R ≡ G 55 → φ ← 2 R → A R/L = G µ 5 ± B µ 5 µ Additional Massive States m 2 χ = M 2 ω 2 R 2 − 4 � � s

  14. String Theory on a Circle � R ≡ G 55 → φ ← 2 R → A R/L = G µ 5 ± B µ 5 µ Additional Massive States m 2 χ = M 2 ω 2 R 2 − 4 � � s Enhanced Symmetry R → 1 = M − 1 m χ → 0 ω = ± 2 s U (1) → SU (2)

  15. Moduli Trapping at Enhanced Symmetry Points (ESPs) S.W. hep-th/0404177, Kofman, et. al. hep-th/0403001 Motion on Moduli Space ϕ → ϕ ( t ) m χ = g φ ( t ) ( ϕ 0 , χ 0 ) � ϕ � = 0 ESP

  16. Moduli Trapping at Enhanced Symmetry Points (ESPs) S.W. hep-th/0404177, Kofman, et. al. hep-th/0403001 Motion on Moduli Space ϕ → ϕ ( t ) m χ = g φ ( t ) ( ϕ 0 , χ 0 ) � ϕ � = 0 ESP

  17. Moduli Trapping at Enhanced Symmetry Points (ESPs) S.W. hep-th/0404177, Kofman, et. al. hep-th/0403001 Motion on Moduli Space ϕ → ϕ ( t ) m χ = g φ ( t ) ( ϕ 0 , χ 0 ) � ϕ � = 0 ESP

  18. Moduli Trapping at Enhanced Symmetry Points (ESPs) S.W. hep-th/0404177, Kofman, et. al. hep-th/0403001 Motion on Moduli Space ϕ → ϕ ( t ) m χ = g φ ( t ) ( ϕ 0 , χ 0 ) � ϕ � = 0 ESP

  19. Moduli Trapping at Enhanced Symmetry Points (ESPs) S.W. hep-th/0404177, Kofman, et. al. hep-th/0403001 Motion on Moduli Space ϕ → ϕ ( t ) m χ = g φ ( t ) ( ϕ 0 , χ 0 ) � ϕ � = 0 ESP

  20. Moduli Trapping at Enhanced Symmetry Points (ESPs) S.W. hep-th/0404177, Kofman, et. al. hep-th/0403001 Motion on Moduli Space ϕ → ϕ ( t ) m χ = g φ ( t ) ( ϕ 0 , χ 0 ) Adiabaticity fails when, ˙ m χ ∼ O (1) m 2 χ � ϕ � = 0 ESP

  21. Moduli Trapping at Enhanced Symmetry Points (ESPs) S.W. hep-th/0404177, Kofman, et. al. hep-th/0403001 Motion on Moduli Space ϕ → ϕ ( t ) m χ = g φ ( t ) ( ϕ 0 , χ 0 ) Adiabaticity fails when, ˙ m χ ∼ O (1) m 2 particle χ creation � ϕ � = 0 ESP

  22. Moduli Trapping at Enhanced Symmetry Points (ESPs) S.W. hep-th/0404177, Kofman, et. al. hep-th/0403001 Motion on Moduli Space ϕ → ϕ ( t ) m χ = g φ ( t ) ( ϕ 0 , χ 0 ) Adiabaticity fails when, ˙ m χ ∼ O (1) m 2 particle χ creation � ϕ � = 0 ESP Near ESP modes become excited -Particle production- − πk 2 � � n k ≈ exp gv 0

  23. Moduli Trapping at Enhanced Symmetry Points (ESPs) S.W. hep-th/0404177, Kofman, et. al. hep-th/0403001 Backreaction and Trapping V eff = 1 2 g 2 χ 2 ϕ ( t ) 2 � χ 2 � = ρ χ ρ χ = ω 2 g 2 ϕ 2 χ Constant Force of Attraction � ϕ � = 0 ESP ϕ ϕ = − gn χ ϕ + 3 H ˙ ¨ | ϕ |

  24. Moduli Trapping S.W. hep-th/0404177 S.W. hep-th/0404177, Kofman, et. al. hep-th/0403001

  25. Moduli Trapping S.W. hep-th/0404177 S.W. hep-th/0404177, Kofman, et. al. hep-th/0403001 V ϕ

  26. Moduli Trapping S.W. hep-th/0404177 S.W. hep-th/0404177, Kofman, et. al. hep-th/0403001 V ϕ

  27. Moduli Trapping S.W. hep-th/0404177 S.W. hep-th/0404177, Kofman, et. al. hep-th/0403001 V 3 4 2 1 ϕ

  28. Studies of Moduli Dynamics Toriodal Compactifications: - S.W. hep-th/0404177 Related ideas -- “String Gas Cosmology”: - T. Battefeld and S.W. -- Rev.Mod.Phys.78:435-454,2006 Conifold: - Mohaupts & Saueressig hep-th/0410272 & hep-th/0410273 - Greene, Judes, Levin, S. W., Weltman hep-th/0702220 Brane positions: - Kofman, Linde, Liu, Maloney, McAllister, Silverstein hep-th/0403001 - Silverstein-Tong hep-th/0310221 M-theory: - Cremonini & S.W. hep-th/0601082 ISS and Finite Temperature: - Craig, Fox, and Wacker hep-th/0611006 Conclusion: Moduli Trapping is generic property of moduli spaces w/ UV completion including gravity

  29. Do we expect to encounter an ESP?

  30. Ergodic (“Chaotic”) Motion and Vacuum Sampling Poincare Surface of Sections Motion on moduli space G ij ( ϕ ) ∂ µ ϕ i ∂ µ ϕ j χ Non-ergodic motion Ergodic Motion ϕ

  31. Ergodic (“Chaotic”) Motion and Vacuum Sampling Poincare Surface of Sections Motion on moduli space G ij ( ϕ ) ∂ µ ϕ i ∂ µ ϕ j χ Ergodic Motion ϕ

  32. Classical Moduli Dynamics Horne & Moore hep-th/9403058 Axio-dilaton in 4D � � ( Im τ ) 2 − κ 2 � � 1 � R − 1 ∂ µ τ∂ µ ¯ τ F − 1 d 4 x √− g aF ˜ F 2 S 4 = + . . . 4 π Tr 2 κ 2 2 g s H = SL (2 , R ) τ = a + ig − 1 s SO (2)

  33. Classical Moduli Dynamics Horne & Moore hep-th/9403058 Axio-dilaton in 4D � � ( Im τ ) 2 − κ 2 � � 1 � R − 1 ∂ µ τ∂ µ ¯ τ F − 1 d 4 x √− g aF ˜ F 2 S 4 = + . . . 4 π Tr 2 κ 2 2 g s H = SL (2 , R ) τ = a + ig − 1 s SO (2) Additional Discrete Symmetries SL (2 , R ) 1 M = ↔ g s SO (2) × SL (2 , Z ) g s

  34. Classical Moduli Dynamics W eak Coupling Im τ = g − 1 s Re τ = a τ → aτ + b 1 ad − bc = 1 → g s cτ + d g s

  35. Classical Moduli Dynamics W eak Coupling Im τ = g − 1 s Re τ = a τ → aτ + b 1 ad − bc = 1 → g s cτ + d g s

  36. Classical Moduli Dynamics W eak Coupling Im τ = g − 1 s g 2 1 s G N = = s V 6 ( Im τ ) 2 ∼ finite M 2 M 2 s V 6 Re τ = a τ → aτ + b 1 ad − bc = 1 → g s cτ + d g s

  37. Aspects of Moduli Stabilization • Two aspects of moduli stabilization: • Generate potential -- a lot of work has been done (e.g. Fluxes, gaugino condensation, instantons etc...) • Fix at the minimum and remain there! -- ( not so much progress )

  38. Duality fixed points are absolute extrema of effective potential for all times (protected by symmetries) e.g. see work of Dine and Banks

  39. Moduli trapping --> why we begin there (initial conditions)

  40. Moduli trapping --> why we begin there (initial conditions) Configurations with: more symmetry / lighter particles are favored

  41. The “Dilaton” Sera Cremonini (Michigan) & S.W. hep-th/0601082 (see also work by Brustein) • BPS techniques suggest that attractor lies outside perturbative region • Kahler moduli typically have shift symmetry -- require non-perturbative effects

  42. Assume “Dilaton” is stabilized at weak coupling e.g. Gaugino Condensation

  43. Prior to Stabilization, it is a dynamical degree of freedom... It could dominate the energy density: e.g. The “Pre-Big Bang” It could be subdominant with other energy/matter present: e.g. String Gas Cosmology

  44. Early String Universe --> FRW Universe???

  45. Geometric Precipices in String Cosmology Nemanja Kaloper and S.W. arXiv:0712.1820 Dilaton gravity w/ sources

  46. Geometric Precipices in String Cosmology Nemanja Kaloper and S.W. arXiv:0712.1820 Dilaton gravity w/ sources Discrete and conserved charge!!! e = NH 2 s + e φ s ρ s

  47. Geometric Precipices in String Cosmology Nemanja Kaloper and S.W. arXiv:0712.1820 ? String Phase RDU Phase (+) (-)

  48. Geometric Precipices in String Cosmology Nemanja Kaloper and S.W. arXiv:0712.1820 e = NH 2 s + e φ s ρ s

  49. Geometric Precipices in String Cosmology Nemanja Kaloper and S.W. arXiv:0712.1820 e = NH 2 s + e φ s ρ s Must Violate NEC

  50. Effect on Dark Matter / LHC

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend